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Abstract

Background: The decision to test for high risk breast cancer gene mutations is traditionally based on risk scores
derived from age, family and personal cancer history. Next generation sequencing technologies such as whole
genome sequencing (WGS) make wider population testing more feasible. In the UK's 100,000 Genomes Project,
mutations in 16 genes including BRCAT and BRCA2 are to be actively sought regardless of clinical presentation. The
implications of deploying this approach at scale for patients and clinical services are unclear. In this study we aimed
to model the effect of using WGS to test an unselected UK population for high risk BRCAT and BRCA2 gene variants
to inform the debate around approaches to secondary genomic findings.

Methods: We modelled the test performance of WGS for identifying pathogenic BRCAT and BRCA2 mutations in
an unselected hypothetical population of 100,000 UK women, using published literature to derive model input
parameters. We calculated analytic and clinical validity, described potential health outcomes and highlighted
current areas of uncertainty. We also performed a sensitivity analysis in which we re-ran the model 100,000 times
to investigate the effect of varying input parameters.

Results: In our models WGS was predicted to identify correctly 93 pathogenic BRCAT mutations and 151 BRCA2
mutations in 120 and 200 women respectively, resulting in an analytic sensitivity of 75.5-77.5 %. Of 244 women
with identified pathogenic mutations, we estimated that 132 (range 121-198) would develop breast cancer, so
could potentially be helped by intervention. We also predicted that breast cancer would occur in 41 women
(range 36-62) incorrectly identified with no pathogenic mutations and in 12,460 women without BRCAT or BRCA2
mutations. There was considerable uncertainty about the penetrance of mutations in people without a family
history of disease and the appropriate threshold of absolute disease risk for clinical action, which impacts on
judgements about the clinical utility of intervention.

Conclusions: This simple model demonstrates the need for robust processes to support the testing for secondary
genomic findings in unselected populations that acknowledge levels of uncertainty about the clinical validity and
clinical utility of testing positive for a cancer risk gene.
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Background

Next generation sequencing technologies such as whole
genome sequencing (WGS) have enhanced the speed
and reduced the cost of seeking genetic mutations pre-
disposing to conditions such as hereditary cancer syn-
dromes [1]. There has, however, been intense debate
about the appropriateness of using these technologies to
screen individuals who do not meet traditional testing
criteria. Arguments against population testing include
uncertainty about the balance of benefit versus harm of
interventions for high risk gene carriers without a strong
family history of disease as well as other ethical, tech-
nical and cost concerns [2—6].

Internationally, clinical approaches to testing for and
reporting secondary genomic findings, defined as find-
ings that are actively sought by a practitioner but are not
the primary target of investigation [7], vary widely. In
the United Kingdom, the approach taken to secondary
findings in the 100,000 Genomes Project—a flagship re-
search project that aims to sequence 100,000 whole ge-
nomes from NHS patients by 2017 [8]-will act as a
blueprint for future NHS practice. It is crucial therefore
that the impact of using WGS for germline genetic test-
ing on population health, clinical and laboratory services
is appropriately considered.

In the 100,000 Genomes Project, deleterious alleles in
16 genes detected on whole genome analysis will be re-
ported back to participants regardless of test indication
[8]. These include the genes BRCAI and BRCA2, impli-
cated in hereditary breast and ovarian cancer syndrome.
In contrast, usual clinical practice is to undertake
BRCAI and BRCA2 testing based on results of risk
scores calculated using factors such as age, family history
and personal cancer history [9, 10]. Germline genetic
testing for high risk cancer genes aims to provide the
best possible estimate of an individual’s cancer risk to in-
form decisions about undergoing risk-lowering interven-
tions. In the absence of a family history, the disease risk
for mutations identified and therefore the clinical utility
of testing, is likely to differ from that seen in multi-case
families and may be poorly estimated.

In this study we aimed to model the likely outcomes
of testing for medically-actionable gene mutations in un-
selected populations undergoing WGS, using the ex-
ample of BRCAI and BRCA2. We considered the
clinical validity of such testing and implications for indi-
viduals, laboratory and clinical services.

Methods

Model development

We built a simple model to calculate WGS test perform-
ance for identifying pathogenic BRCAI and BRCA2 mu-
tations in an unselected population of 100,000 UK
women. Model input parameters were obtained from
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reviewing published literature on population prevalence
of pathogenic BRCAI and BRCA2 mutations and range
and frequency of different mutation types including sin-
gle nucleotide variants (SN'Vs), small insertions/deletions
(indels) and copy number variants (CNVs). Where pos-
sible these were taken from studies in populations at low
risk of breast cancer rather than multi-case families. We
also used test performance literature for Illumina Tru-
Genome Clinical Sequencing Services [11] and relevant
laboratory standards [12, 13] to inform estimates of ana-
lytical validity—Table 1.

Analytic validity calculations
Calculations shown below for BRCAI were repeated for
BRCA2. We assumed that variants of uncertain signifi-
cance (VUS) were not reported back to patients in line
with common practice [14].

o True positives = prevalence of pathogenic BRCAI
mutations x population size x (proportion of BRCA1
mutations that are small indels x sensitivity of WGS
for detecting small indels + proportion of BRCA1I
mutations that are SN'Vs x sensitivity of WGS for
detecting SN'Vs + proportion of BRCAI mutations
that are CN'Vs x sensitivity of WGS for detecting
CNVs) x horizontal gene coverage of WGS for
BRCAI1*

o False negatives = prevalence of pathogenic BRCAI
mutations x population size—true positives

e False positives = in main model assumed to be 0
after a confirmatory step*. In sensitivity analysis we
modelled the effect of an extra 0-5 % of false positive
results in addition to true positive results

Table 1 Model input parameters (main analysis)

Input parameters for main model Values for Values for

BRCA1 BRCA2
Prevalence of pathogenic mutations 0.0012 0.002
in unselected population
Theoretical population size 100000 100000
Proportion of pathogenic mutations 0.54 0.69
that are small indels
Proportion of pathogenic mutations that are 0.36 0.21
SNVs (nonsense, pathogenic missense, splice site)
Proportion of pathogenic mutations 0.1 0.1
that are CNVs
Gene coverage using WGS 0.9941 0.9997
Sensitivity of WGS for small indels 0.8 08
Sensitivity of WGS for SNVs 097 097
Sensitivity of WGS of CNVs 0 0
Specificity of WGS for indels 1 1
Specificity of WGS for SNVs 1 1
Specificity of WGS for CNVs 1 1
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e True negatives (including VUS) = population size-
prevalence x population size-false positives

Test performance measures of WGS for detecting
pathogenic mutations were calculated as follows:

e Analytical sensitivity = True positives detected/Total
with a true pathogenic mutation

e Analytical specificity = True negatives detected/Total
without a pathogenic mutation

e Analytical positive predictive value = True positives
detected/Total with a variant on testing

o Analytical negative predictive value = True negatives
detected/Total without a variant on testing

*Note in line with usual practice for next generation
sequencing we assumed that any positive results would
be confirmed by an independent test from a new DNA
dilution or a secondary test e.g. a SNP assay [13]. It is
not usual practice to confirm all negative findings but
we assumed for the model that reporting standards for
negative findings were met [13].

Sensitivity analysis

We also performed a sensitivity analysis to investigate
the effect of varying model input parameters. The model
was rerun 100,000 times with model input parameters
being randomly selected from defined likely distributions
using Stata’s random number generator function. The
proportion of pathogenic mutations due to CNVs was
assumed to be fixed at 0.1, but the proportion of small
indels and SNVs varied according to an underlying nor-
mal distribution. Sensitivity of WGS for detecting CNVs
was fixed at 0, based on current test performance litera-
ture, but sensitivity for detecting SNVs and small indels
was selected from an underlying gamma distribution.
We also assumed that false positives would occur at a
rate of less than 10 % of the number of true positives,
but heavily skewed towards 0. Calculations for true posi-
tives, false negatives and true negatives remained the
same as for the main model. Underlying distributions
for model input parameters are shown in Fig. 1.

Assessing clinical validity

We assessed the performance of WGS for detecting future
risk of breast cancer by applying population penetrance
estimates from published literature to modelled numbers
of women with each test outcome—true positives, false
positives, true negatives and false negatives. We did not
evaluate the clinical utility of testing for pathogenic
BRCAI1 and BRCA2 mutations because such testing is
well-established internationally in the context of multi-
case families. Evaluation of the complex ethical, legal and
social implications was outside the scope of this paper.
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Results

Prevalence and types of BRCAT and BRCA2 mutations

In an unselected UK population we initially assumed
a carrier frequency of 0.12 % for pathogenic BRCAI
mutations and 0.2 % for BRCA2 mutations [15],
which equated to 120 BRCAI and 200 BRCA2 muta-
tions in 100,000 unselected women. In our main
model we also assumed that pathogenic BRCAI mu-
tations comprised 54 % small indels, 36 % SNVs and
10 % CNVs; corresponding figures for pathogenic
BRCA2 mutations were 69 % small indels, 21 % SNVs
and 10 % CNVs. This was based on findings that
around 88-90 % of pathogenic BRCA1 and BRCA2
mutations are due to missense, nonsense and splice
site mutations as well as small indels, with the
remaining 10-12 % due to large rearrangements/du-
plications [16]. A recent population series of 2,222
ovarian cancer cases and 1,528 controls characterised
the spectrum of mutations further: 85 BRCAI muta-
tions were detected, comprising 51 frameshift indels
and 34 missense, nonsense or splice site mutations;
there were also 98 BRCA2 mutations, made up of 75
frameshift indels and 23 missense, nonsense or splice
site mutations [17].

Penetrance of BRCAT and BRCA2 mutations

In our main model we used penetrance figures of
59 % for BRCAI and 51 % for BRCA2 based on aver-
age cumulative risk of female breast cancer modelled
over all possible modifiers for carriers born after 1950
[15], but also included ranges of 57-71 % for BRCA1
[18-20] and 45-87.5 % [21, 22] for BRCA2 based on
other literature findings. The penetrance of these mu-
tations for breast cancer varies with age at testing,
family history and mutation type, depending on a
complex interplay between the genetic variant and
other environmental and genetic modifiers. Conse-
quently, published estimates of penetrance vary,
reflecting both the effect of differing risk modifiers
and methods of ascertainment of mutation carriers.
Estimates from studies based on multi-case families
are typically higher than those based on unselected
breast cancer cases. There are no empirical estimates
of the average penetrance for an unselected mutation
carrier. However, estimates of the average risk have
been derived from complex segregation analyses using
data from both multi-case families and breast cancer
case series by explicitly modelling the contribution of
modifiers [15], which we considered the most appro-
priate estimates for our study.

Factors affecting WGS performance
Analytical validity of WGS for identifying and classify-
ing genetic variants correctly depends on a range of



Warren-Gash et al. Hereditary Cancer in Clinical Practice (2016) 14:12

Page 4 of 8

2000
L

1500
L

Y
zq
&5 81
8 e
s
s
3
O~ T T T T
0 .0005 001 0015 002
Prevalence of pathogenic BRCA1 mutations
@d
@d
2
2
g Y
3

3 4
Proportion of SNVs
o
S
w |
2
7]
=
8 o
0]
© - T T T T T
75 8 .85 9 .95 1
Sensitivity of WGS for small indels
o
¥
2 |
3
2
)
5
o g4
o |
© - T T T T T
[ .05 ol 15 2 .25

Additional proportion of false positive results expected

Fig. 1 Distribution of model input parameters used for sensitivity analysis using example of BRCAT

© - T T T T T
3 4 5 6 7 8

Proportion of small indels

Density
200 300 400
. . .

100
L

T T T
.99 992 994 996 998
Gene coverage BRCA1

150
L

100
L

Density

© - T T T T
.96 97 .98 .99 1
Sensitivity of WGS for SNVs

factors including depth of coverage as well as technical
accuracy for detecting different mutation types. In our
model we assumed an adequate read depth but recog-
nised that in practice the minimum depth of coverage
varies depending upon the required sensitivity of the
assay, the sequencing method and the type of mutation
detected and should be established during the test valid-
ation process [13]. Algorithms in current clinical use

allow >97 % of SNVs and >80 % of deletions to be identi-
fied by WGS but may be unable to detect larger inser-
tion/deletion events of >7 bp, translocations, trinucleotide
repeats or CNVs [11], although this area is developing
rapidly. An additional factor is horizontal coverage across
the genome, which is typically>95 % for WGS, but
reported as 99.41 % in the region of BRCAI and 99.97 %
for BRCA2 [11].
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Test performance of WGS for detecting BRCAT and BRCA2
pathogenic mutations

In our main model WGS successfully detected 93
women out of 120 with pathogenic BRCAI variants and
151 women out of 200 with pathogenic BRCA2 variants
in a hypothetical UK population of 100,000 women. This
gave an analytic sensitivity of 77.5 % for BRCA1 variants
and 75.5 % for BRCA2. Specificity was 100 %, with
100 % PPV and 99.9 % NPV for both genes. Sensitivity
analysis gave similar results—Table 2.

Clinical validity

The performance of WGS for predicting future risk of
breast cancer depends both on test performance and on
the association between genotype and disease. In our
model, WGS correctly identified 132 women (range
121-198) with a pathogenic BRCAI or BRCA2 mutation
who would develop breast cancer. We also estimated
that breast cancer would occur in 41 women (range 36—
62) incorrectly identified with no pathogenic mutations
and in 12,460 women who truly had no mutation, based
on a background lifetime risk of female breast cancer of
12.5 % in the UK [23] Fig. 2.

Potential health outcomes

Scenario 1 Analytic true positive women = 244/100,000
Positive health outcomes include reductions in breast
cancer incidence and mortality for the 132 women pre-
dicted to develop breast cancer and their family mem-
bers. The 112 other analytic true positive women would
have the same preventive options but receive no benefit.
Potential negative consequences include physical and
psychological harms of chemoprevention or prophylactic
surgery.

Scenario 2 Analytic false positive women = 0/100,000

There are no positive health outcomes for this group.
All negative health outcomes identified for true positive
women would apply, although numbers affected are
likely to be extremely small.

Scenario 3: Analytic false negative women = 76/100,000
This group will have no positive health outcomes. There
may be false reassurance associated with receiving a
negative result. Opportunities to prevent breast cancer
will be missed.

Scenarios 4 Analytic true negatives

(includes VUS) = 99 680/100,000

There are no direct positive or negative health outcomes
for this group, although without careful consent and
clear clinical feedback some may be falsely reassured
that they are not at risk of breast cancer which might
affect subsequent health behaviour.

Page 5 of 8

Discussion

Using the example of pathogenic BRCAI and BRCA2
mutations we demonstrate the type of process that
should be undertaken when considering likely outcomes
of testing for secondary genomic findings in unselected
populations. We estimated that WGS would detect 75.5-
77.5 % of pathogenic BRCA1 and BRCA2 mutations,
with the majority of undetected mutations comprising
CNVs. This is well below the 95 % sensitivity threshold
recommended for clinical genetic diagnostic tests [13].
In a hypothetical UK population of 100,000 women, this
would result in 244 identified for further interventions,
potentially preventing around 132 cases of breast cancer.
This would also result in unnecessary inteventions for
112 women with mutations predicted not to develop
cancer, although this is in line with current practice [10].
We note that outside the context of WGS, routine
BRCA1 and BRCA2 testing is neither recommended nor
advocated at population level [9, 10, 24].

Key areas of uncertainty include limitations to current
knowledge of the prevalence, spectrum and penetrance
of pathogenic mutations associated with a variety of her-
editary diseases, including those currently recommended
for routine examination on WGS by Genomics England.
In hereditary breast cancer, estimates of penetrance have
frequently been derived from studies conducted in
multi-case families as population estimates do not exist,
and it may not be appropriate to apply such estimates to
unselected populations undergoing WGS. For mutations
in other genes conferring a lower risk of disease, there is
uncertainty about the threshold for clinical action and
thus the level of absolute disease risk at which secondary
findings should be fed back.

Care pathway factors should also be considered
when implementing this approach. Currently WGS
has sub-optimal sensitivity for detecting certain types
of mutation, in particular CNVs and some indels.
Concerns have been raised about potential inconsist-
encies between laboratories in assuring quality of data
generated by WGS and its interpretation [25]. The risk
of false positives, although low, would be increased if
laboratories did not undertake a confirmatory step.
The number of pre-symptomatic mutation carriers
identified across a range of genes tested for secondary
findings is unknown so there is a lack of assurance
that clinical services will be able to manage the extra
work volume generated. For BRCAI and BRCA2 mu-
tation carriers this would include enhanced radiologic
surveillance, chemoprophylaxis and/or prophylactic
surgery to mitigate risk. In addition the cost effective-
ness of such interventions is uncertain although recent
data suggest that screening of generally healthy indi-
viduals using next generation sequencing may not cur-
rently be cost effective [26].



Table 2 Numbers of pathogenic BRCAT and BRCA2 mutations detected in an unselected population of 100 000 UK women using WGS

BRCAT main model
Variant detected by WGS? Yes

Yes 93
No 27
Total 120

BRCAT sensitivity analysis Mean (SD)

True positives 94 (15.8)
False positives 219

False negatives 26 (4.7)

True negatives 99 878 (204)

Has gene variant?

No

0

99 880

99 880

Median (IQR)

94 (83-105)

1(0-3)

26 (23-29)

99 878 (99 864-99 891)

Total

93

99 907
100 000
Min

26

99 777

99 967

BRCA2 main model
Variant detected by WGS?
Yes
No
Total
BRCA2 sensitivity analysis
True positives
False positives
False negatives

True negatives

Has gene variant?

Yes

151

49

200

Mean (SD)
153 (23.0)
3360

48 (7.8)

99 797 (30.5)

No

0

99 800

99 800

Median (IQR)

153 (137-168)

2 (1-4)

47 (42-53)

99 796 (99 776-99 817)

Total
151

99 849
100 000
Min

49

0

16

99 672

245

37

88

99 934
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Fig. 2 Flowchart of expected breast cancer incidence in unselected women undergoing WGS

Globally there is divergent policy around secondary
genomic findings: in 2013 the American College of
Medical and Genetics and Genomics (ACMG) con-
troversially recommended routine examination of 56
potentially actionable genes and types of variants
whenever clinical exome or genome sequencing is
undertaken [27] (although an opt out clause has since
been added) [28]; the European Society of Human
Genetics in contrast suggests using a targeted testing
or reporting strategy where possible to minimise the
risk of genetrating unsolicited findings [29]. In the
UK the 16 genes recommended for routine examin-
ation in the 100,000 Genomes Project are based on
the ACMG list plus ‘subsequent expert opinion’ [7].
In unselected populations, however, it is unclear how
well this approach to secondary genomic findings al-
lows quantification of an individual’s absolute disease
risk, which is essential to making valid judgements
about risks and benefits of clinical intervention.

Conclusions

In summary, we use a simple model to highlight issues
that hinder the utility of actively seeking secondary find-
ings using WGS, even for relatively well-characterised
genes. Applying this method to other gene-disease com-
binations is likely to reveal further gaps. It is therefore
imperative that robust processes are in place for man-
aging and understanding these complex data and appre-
ciating the levels of uncertainty around clinical validity
and clinical utility of testing positive for a cancer risk
gene. Detailed evaluation of developing practice and
research will be essential to enable effective clinical im-
plementation of this approach to secondary genomic
findings in unselected populations.
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