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AAbbssttrraacctt

Multiple Osteochondromas is an autosomal dominant disorder characterised by the presence of multiple
osteochondromas and a variety of orthopaedic deformities. Two genes causative of Multiple Osteochondromas,
Exostosin-1 (EXT1) and Exostosin-2 (EXT2), have been identified, which act as tumour suppressor genes.
Osteochondroma can progress towards its malignant counterpart, secondary peripheral chondrosarcoma and
therefore adequate follow-up of Multiple Osteochondroma patients is important in order to detect malignant
transformation early. 
This review summarizes the considerable recent basic scientific and clinical understanding resulting in a multi-
step genetic model for peripheral cartilaginous tumorigenesis. This enabled us to suggest guidelines for clinical
management of Multiple Osteochondroma patients. When a patient is suspected to have Multiple
Osteochondroma, the radiologic documentation, histology and patient history have to be carefully reviewed,
preferably by experts and if indicated for Multiple Osteochondromas, peripheral blood of the patient can be
screened for germline mutations in either EXT1 or EXT2. After the Multiple Osteochondroma diagnosis is
established and all tumours are identified, a regular follow-up including plain radiographs and base-line bone
scan are recommended.
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IInnttrroodduuccttiioonn

Osteochondroma is the most common benign
bone tumour, which occurs as sporadic (solitary) or
multiple, usually in the context of the hereditary
syndrome, Multiple Osteochondromas (MO) [1, 2].
Considerable understanding obtained through research
on the genetic, pathological and radiologic
background of these tumours, has provided insights
into the tumorigenesis of Multiple Osteochondromas
resulting in the optimisation of clinical management,
including radiologic and mutational screening.

IInncciiddeennccee

Osteochondromas represent about 50% of all
surgically treated primary benign bone tumours [1].
Approximately 15% of the osteochondroma patients
have multiple lesions [1, 3] of which 62% have 
a positive family history [4]. 

The incidence for Multiple Osteochondromas has
been estimated at 1:50,000 in the general population
[5], with a higher prevalence in males (male:female
ratio of 1.5:1) [4, 6], which is partly due to incomplete
penetrance in females [4]. 
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OOsstteeoocchhoonnddrroommaa

Osteochondroma (osteocartilaginous exostosis),
according to the 2002 WHO definition, is a cartilage
capped benign bony neoplasm on the outer surface of
bones preformed by endochondral ossification [7-9].
They develop and increase in size in the first decade
of life and cease to grow at skeletal maturation or
shortly thereafter. The most common site of involvement
is the metaphyseal region of the long bones of the
limbs, like the distal femur, upper humerus, upper tibia
and fibula [1, 8]. However, osteochondromas also
occur in flat bones, in particular the ilium and scapula.
An important differential diagnostic feature as
compared to e.g. metachondromatosis or parosteal
and periosteal osteosarcoma, is the extension of the
medullar cavity into the lesion and the continuity of the
cortex with the underlying bone. The perichondrium,
the outer layer of osteochondroma, is continuous with
the periosteum of the underlying bone.

Many osteochondromas are cauliflower shaped and
can be divided on macroscopical grounds to often long
slender pendunculated osteochondromas and flat
sessile ones.  

In the cartilage cap the chondrocytes are arranged
in a similar fashion as in the epiphyseal growth plate.
As a typical benign tumour the chondrocytes have small
single nuclei. Binucleated chondrocytes may be seen
during active growth.  

The stalk may fracture, which may result in reactive
fibroblastic proliferation and new bone formation,
erroneously leading to interpretation as the formation
of secondary sarcoma. Attached to the perichondrium
a secondary bursa may develop and simulate the
growth of the underlying tumour. This bursa is lined by
synovium and may show inflammatory changes [3].

MMuullttiippllee  OOsstteeoocchhoonnddrroommaass

Multiple Osteochondromas (hereditary multiple
exostoses, diaphyseal aclasis) are characterised by the
presence of multiple osteochondromas [2, 4, 6, 10, 11]
the number of which can vary significantly between and
within families. Most Multiple Osteochondroma patients
also suffer from a variety of orthopaedic deformities like
shortening of the ulna with secondary bowing of the
radius (39-60%), inequality of the limbs (10-50%), varus
or valgus angulation of the knee (8-33%), deformity of
the ankle (2-54%) and disproportionately short stature
[2, 4-6, 12]. It has been a matter of debate whether
these deformities are a result of skeletal dysplasia or 
a result of local effects on the adjacent growth plate
caused by developing osteochondromas. 

No well-documented association between Multiple
Osteochondromas and other non-bone related
disorders has been described so far. 

MMaalliiggnnaanntt  ttrraannssffoorrmmaattiioonn

Malignant transformation of osteochondroma is
estimated to be less than 1% in patients with solitary
lesions and 0.5-3% in patients with Multiple
Osteochondromas [2, 7]. In 94% of the cases with
malignant progression a secondary peripheral
chondrosarcoma has developed within the cartilage
cap of an osteochondroma [13]. Secondary peripheral
chondrosarcoma is a hyaline cartilage producing
tumour and constitutes approximately 15% of all
chondrosarcomas [1, 14], which is the third most
frequent malignant bone tumour after myeloma and
osteosarcoma [15]. Increasing pain, functional disability
and/or a growing mass, specifically after maturation
of the skeleton, may indicate malignant transformation.
Radiologic features show irregular mineralisation and
increased thickness (over 2 cm) of the cartilage cap of
an osteochondroma. The cap shows lobules of hyaline
cartilage that are separated by bands of fibrous tissue
[15]. With (dynamic) contrast enhanced magnetic
resonance (MR) imaging this can be seen as septal
enhancement whereas osteochondromas only display
peripheral enhancement. High-grade peripheral
chondrosarcomas are characterised by inhomogeneous
and homogeneous enhancement patterns on
gadolinium-enhanced MR images [16, 17]. 

The histological grading of chondrosarcoma is based
on nuclear size and chromasia and cellularity [18] and
is the most important predictor of clinical behaviour and
thus prognosis of patients with chondrosarcomas [15].
Chondrosarcomas secondary to osteochondromas are
usually low-grade tumours resulting in a reasonably fair
prognosis for these patients [15].

In the remaining 6% of the cases with malignant
progression tumours arise in the bony stalk of the
osteochondroma, including osteosarcomas and spindle
cell sarcomas [19-22]. 

GGeenneettiiccss

Multiple Osteochondromas is an autosomal dominant
disorder for which two genes have been isolated,
Exostosin-1 (EXT1; OMIM 133700) located at 8q24 and
Exostosin-2 (EXT2; OMIM 133701) located at 11p11-
p12 [23-25]. 44-66% of the Multiple Osteochondroma
families show linkage at the EXT1 region [26, 27],
compared to 27% for EXT2 [27]. Germline mutations of
EXT1 and EXT2 have been described in Multiple
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FFiigg..  11..  Specimen radiographs and histology
A pedunculated osteochondroma shown in a macroscopic whole
mount section (AA) and specimen radiograph (BB); CC, whole mount
section of a sessile osteochondroma. Note the presence of a small
cartilage cap in both osteochondromas (<0.5 cm); DD, radiograph
of the forearm of a Multiple Osteochondroma patient. Several
osteochondromas can be seen at the ends of the ulna and radius.
Note that the ulna is shortened, which caused subsequent bowing
of the radius; EE and FF, gross specimen and whole mount section
of secondary peripheral chondrosarcoma. The cartilage cap is
thicker than 2 cm and in the whole mount section the lobules are
clearly visible.

FFiigg..  11AA

FFiigg..  11CC

FFiigg..  11EE

FFiigg..  11DD

FFiigg..  11BB

FFiigg..  11FF
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Osteochondroma patients from Caucasian [23, 25, 28-
31] and Asian populations [32-34]. 

Most mutations (80%) found in EXT1 and EXT2 (Fig.
2) are either nonsense, frameshift or splice-site mutations
leading to premature terminations of the EXT proteins
(reviewed by Zak et al [35]). Mutations in EXT1 occur in
all parts of the gene, while mutations in EXT2 concentrate
towards the N-terminus of the gene, implying that this
part of the protein may have special functions. This seems
contradictive, since only the C-terminal region is highly
conserved, implicating some functional importance for
this part of the protein [24, 25]. In the literature, only one
somatic mutation in the EXT1 gene has been described
in a sporadic chondrosarcoma [29].

Loss of the remaining wild-type allele has been
demonstrated in hereditary osteochondromas [31],
indicating that the EXT genes act as tumour suppressor
genes in Multiple Osteochondromas. This is consistent
with Knudson’s two-hit model for tumour suppressor
genes [36]. 

Not many genotype-phenotype correlation studies
have been described to draw definitive conclusions
[37, 38]. There seems to be a slightly higher risk of
malignant transformation in patients with an EXT1
mutation as compared to EXT2 [38]. 

The existence of a third EXT gene on chromosome
19p, EXT3 [39], has been suggested, however no gene
has been identified, nor has this locus been implicated
by other researchers.

Based on their homology with EXT1 and EXT2,
three other members of the EXT-family of genes, the

EXT-like genes (EXTL1-3), have been identified [40-42].
EXTL1, EXTL2 and EXTL3 are located at 1p36.1 [40],
1p11-p12 [41] and 8p12-p22 [42], respectively. No
linkage with Multiple Osteochondromas or other bone
diseases has been documented for these genes [43].

EEXXTT11

Before linkage to Multiple Osteochondromas,
osteochondromas were already known to be involved
in a contiguous gene deletion syndrome, the Langer
Gideon syndrome (LGS or trichorhinophalangeal
syndrome type II; OMIM150230) [44], where patients
carry a deletion of 8q24 [45]. Besides multiple
osteochondromas the Langer Gideon syndrome is
characterised by craniofacial dysmorphism and mental
retardation [44, 45].

In the early nineties Cook et al found linkage to the
8q24.11-q24.13 region in Multiple Osteochondroma
families [46] and two years later the EXT1 gene was
identified by positional cloning [23]. 

The EXT1 gene, composed of 11 exons, spans
approximately 350kb of genomic DNA (Fig. 3) [47]
with a promoter region that has the characteristics of
a house keeping gene [47]. EXT1 mRNA is ubiquitously
expressed and has a coding sequence of 2238 bp [23].
In mouse embryos, high mRNA levels of the EXT1
homologue have been found in the developing limb
buds [48,49]. EXT1 homologues have also been
identified in Drosophila melanogaster (tout-velu, Ttv)
and Caenorhabditis elegans [50, 51]. 

Liesbeth Hameetman et al

FFiigg..  22.. Mutation spectrum of the EXT1 and EXT2 genes in MO patients described so far [106]
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EEXXTT22

In two large Multiple Osteochondroma pedigrees
not linked to 8q24, linkage was found to a 3 cM
region located at 11p11-p12, excluding the
pericentrometric region [52, 53]. In 1996, the EXT2
gene was identified by positional cloning by two
groups independently [24, 25].

The EXT2 gene contains 16 exons (Fig. 3) and spans
approximately 108 kb of genomic DNA [51]. The mRNA
consists of approximately 3kb, with a single open reading
frame of 2154 bp in which the C-terminal region shows
high similarity with EXT1 [24, 25]. The mRNA shows
alternative splicing in exon 1a and 1b and is ubiquitously
expressed [24, 25]. Homologues of EXT2 have been
found in mouse (chromosome 2) [51, 54], Drosophila
melanogaster (sister of tout-velu, sotv) [55] and
Caenorhabditis elegans [51].

Like EXT1, EXT2 has been implicated in a contiguous
gene deletion syndrome, Potocki-Shaffer syndrome
(DEFECT11; OMIM 601224), where patients carry 
a deletion of 11p11.2-p12 [56, 57].  Patients with this
syndrome demonstrate multiple osteochondromas,
enlarged parietal foramina (FPP), craniofacial dysostosis
and mental retardation [56, 57].

EEXXTT  ffuunnccttiioonn

The gene products of human EXT1 and EXT2 are
endoplasmic reticulum localised type II transmembrane
glycoproteins. In vivo they form a stable hetero-
oligomeric complex that accumulates in the Golgi
apparatus, where it is involved in heparan sulphate
proteoglycan (HSPG) biosynthesis (reviewed by Esko
et al [58]) (Fig. 4). The EXT1/EXT2 complex catalyses
the elongation of the HS chain [59-62], which is

subsequently deacetylated, sulphated and epimerised
resulting in a large spectrum of structural heterogenic
HS chains. The sulphation pattern of HS chains is
critical for binding specific proteins [58]. Several
growth factors have conserved patterns of basic amino
acids for binding to HSPGs, which is crucial for proper
signalling [63, 64].  

HHeeppaarraann  SSuullpphhaattee  PPrrootteeooggllyyccaannss  ((HHSSPPGG))

HSPGs are large multifunctional macromolecules
involved in several growth signalling pathways,
anchorage to the extracellular matrix and
sequestering of growth factors (reviewed by Knudson
[65]). Four HSPG families have been identified:
syndecan, glypican, perlecan and CD44 isoforms. 

The syndecan family consists of four members,
encoding type I transmembrane polypeptides
involved in the anchorage of cells to the extracellular
matrix and binding of growth factors [66]. In mouse
and chick, syndecan-2 and -3 have shown to be
involved in signalling pathways in proliferating
chondrocytes [67-70].

The six glypican family members encode proteins
attached to the cell membrane with a glycosylphosphati-
dylinositol (GPI)-anchor. They predominantly function
as co-receptors [66]. Expression of several glypicans
has been found in the perichondrium, the developing
limb and mesenchymal tissues of the developing
mouse embryo [71].

The largest HSPG, perlecan, is the most common
proteoglycan of the basement membrane. It is
expressed in hyaline cartilage and in all zones of the
rat growth plate during endochondral ossification
[72]. Perlecan, syndecan and glypican are reported
to be involved in FGF-signalling [65, 66].

FFiigg..  33..  Genomic DNA structures of the EXT1 and EXT2 genes
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The fourth HSPG family is specific isoforms of
the type I transmembrane glycoproteins CD44.
The CD44 gene consists of 20 exons of which 10
(so-called variable exons) can be alternatively
spliced (reviewed by Ponta et al [73]). CD44
isoforms containing variable exon 3 (v3) have
been shown to bind growth factors through HS
side chains, thereby regulating cell growth and
motility [74].

In Drosophila, the EXT1 homologue Ttv (tout-velu),
also involved in HS synthesis, is required for the
diffusion of Hedgehog (Hh), an important segment
polarity protein (homologue of mammalian IHh) [50].
Remarkably, in Ttv mutants only the IHh signalling is
affected, while other HSPG-dependent pathways, like
FGF and WNT signalling, are not. This indicates 
a specificity in the regulation of the distribution of
extracellular signals by HSPGs in Drosophila [75, 76]. 

Liesbeth Hameetman et al

FFiigg..  44..  The mode of action of the EXT-proteins in heparan sulphate biosynthesis 
After a tetrasaccharide linker is synthesised on conserved serine residues of the core protein, EXTL2 and/or EXTL3 initiate the polymerisation
of the heparan sulphate chain by the addition of N-acetylglucosamine [60, 107]. The EXT1/EXT2 complex subsequently catalyses further
elongation of the heparan sulphate chain by adding alternating units of N-acetylglucosamine and glucuronic acid [59-62]. Subsequent
deacetylation and sulphation of most N-acetylglucosamines, epimerisation of the glucoronic into iduronic acid and further sulphation result
in a large spectrum of structural heterogenic heparan sulphate chains [58, 108].
Adapted from Couchman et al [109] and Nybakken et al [110].
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GGrroowwtthh  SSiiggnnaalllliinngg
IInnddiiaann  HHeeddggeehhoogg  ((IIHHhh))//PPTTHHrrPP  ssiiggnnaalllliinngg  iinn  tthhee  ggrroowwtthh  ppllaattee

In the growth plate EXT1 and EXT2 are expressed in
the proliferative and transition zone [77] (Fig. 5). The
HSPGs, expressed in all zones of the growth plate [67-
72], are presumed to be involved in the diffusion of IHh
to its receptor in the perichondrium. During normal
embryonic growth IHh, expressed in the transition zone,
is involved in a paracrine feedback loop regulating
proliferation and differentiation of chondrocytes and bony
collar formation in the growth plate (Fig. 5A). In this
feedback loop PTHrP regulates chondrocyte differentiation
by delaying progression of chondrocytes towards the
hypertrophic zone, allowing longitudinal bone growth
[78]. In the rat post-natal growth plate the feedback loop
is confined to the growth plate itself (Fig. 5B), in particular
to the transition zone [79]. 

FFiibbrroobbllaasstt  GGrroowwtthh  FFaaccttoorr  ((FFGGFF))  ssiiggnnaalllliinngg  iinn  tthhee  ggrroowwtthh  ppllaattee

The FGF-signalling pathway is dependent on
HSPGs for the high affinity binding capacity of the FGF
receptor (FGFR), allowing receptor dimerisation and

subsequent cell signalling [80, 81]. The most potent
mitogen for chondrocytes, FGF-2 (basic FGF), inhibits
differentiation of chondrocytes via stimulation of
extracellular matrix synthesis [82, 83]. In contrast,
activation of FGFR3 in the proliferative zone (Fig. 5),
by FGF18 [84] inhibits chondrocyte proliferation via
phosphorylation of STAT-1 and subsequent
upregulation of p21WAF/CIP1, which can inhibit the cell
cycle [85]. FGFR3 activation also leads to repression
of IHh signalling [80, 81, 86].

HHiissttooggeenneessiiss  aanndd  sseeccoonnddaarryy  ssaarrccoommaa
ffoorrmmaattiioonn

In the past, many have considered the
histogenesis of osteochondroma as a perversion in
the direction of normal bone growth resulting from
aberrant epiphyseal development with displacement
of epiphyseal cartilage. However, several research
groups have demonstrated using different techniques
that both sporadic and hereditary osteochondromas
are true neoplasms [31, 87, 88], resulting in a multi-
step genetic model for peripheral cartilaginous
tumorigenesis (Fig. 6) [89].

FFiigg..  55..  Growth plate signalling 
EXT1 and EXT2 are expressed in the proliferative and transition zone [77] (Fig. 5). The HSPGs, expressed in all zones of the growth plate
[67-72]. A. In the embryonic growth plate chondrocytes in the transition zone secrete IHh protein, which diffuses to its receptor Patched
(Ptc) in the lateral perichondrium. Subsequently, via a yet incompletely understood mechanism, increased secretion of ParaThyroid Hormone
related Protein (PTHrP, PTHlP) is induced at the apical perichondrium, which diffuses to its receptor expressed in the late proliferating
chondrocytes [80]. Terminal differentiation is inhibited by direct or indirect upregulation of Bcl-2, prolonging cell survival [78]. In this way,
PTHrP regulates chondrocyte differentiation by delaying the progression of chondrocytes towards the hypertrophic zone and allowing
longitudinal bone growth. B. In the post-natal growth plate the signalling is confined to the growth plate [79].



.

Although some believe that the severity of the
angular deformity is correlated with the number of
sessile osteochondromas [37], several studies in mice
have shown that haploinsufficiency of EXT1 or EXT2
causes severe skeletal deformities [90, 91]. Loss of
the remaining wild-type allele of EXT1 in hereditary
osteochondromas [31] indicated that inactivation of
both copies of the EXT1 gene in cartilaginous cells
of the growth plate is required for osteochondroma
formation, thereby acting as a tumour suppressor
gene [31]. Two studies have shown diminished HSPG
expression in either osteochondromas or cultured
EXT1-/- cells [92, 93]. This is hypothesised to affect
the negative feedback loop by disturbing IHh
diffusion to Ptc and by preventing high-affinity
binding of FGF to its receptor (Fig. 5).
Immunohistochemical studies have already shown
that molecules involved in the IHh/PTHrP and
FGF/FGFR signalling (PTHrP, PTHrP-R1, Bcl-2, FGF2,
FGFR1, FGFR3 and p21) are absent in

osteochondromas [94] suggesting that growth
signalling is indeed disturbed in osteochondroma. 

At the protein level, re-expression of several of
these signalling molecules (FGF2, FGFR1, p21,
PTHrP and Bcl-2) was found in secondary peripheral
chondrosarcoma and the expression increased with
increasing histological grade [94]. Upregulation of
Bcl-2 characterised malignant transformation of
osteochondroma towards grade I secondary
peripheral chondrosarcoma [94]. Signalling may now
occur in an autocrine fashion or in a paracrine one
in which IHh acts on cells in its near vicinity, having
to diffuse over only a few cell diameters and thereby
avoiding HSPG-dependent diffusion [94].

The process of malignant transformation is
genetically represented by chromosomal instability [95],
probably caused by defects in spindle formation. The
LOH found in osteochondroma was restricted to 8q24
[31], whereas in secondary peripheral chondrosarcomas
LOH was found in virtually all loci tested [95]. Also a

Liesbeth Hameetman et al

FFiigg..  66..  Peripheral Cartilaginous Tumorigenesis
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broad range in DNA ploidy including near-haploidy
and non-specific chromosomal alterations were found
[95, 96]. DNA-flow cytometry of the cartilaginous cap
of osteochondromas showed mild aneuploidy [31],
whereas more severe aneuploidy [97-99], including
near-haploidy [95], was seen in grade I secondary
peripheral chondrosarcomas. 

Further progression towards high-grade secondary
peripheral chondrosarcomas is characterised by
polyploidisation, which is thought to be evolved from
near-haploid precursor clones [89], and overexpression
of p53 [95].

Near-haploidy was not found in osteochondromas
[87, 88] or in high grade peripheral chondrosarcomas
[95] and can be considered a progression marker
towards a low malignant phenotype [89].  

PPaattiieenntt  mmaannaaggeemmeenntt
DDiiaaggnnoossiiss

With the identification of EXT1 and EXT2 as the
genes causative of Multiple Osteochondromas, it has
become possible to screen patients with multiple lesions
for germline mutations in either EXT gene in a diagnostic
setting. However this procedure is time consuming and
costly and therefore it is important to select patients
carefully on the basis of family history, radiologic
documentation and, if available, review of histology of
resected lesions.

The diagnosis of Multiple Osteochondromas is based
on the combination of two or more radiologically
documented osteochondromas originating from the juxta-
metaphyseal region of the long bones [2, 4], with or
without a positive family history. Radiologically, Multiple
Osteochondroma patients have a typical phenotype, easy
to recognise by the expert eye. This can exclude the
differential diagnoses of other skeletal disorders like
metachondromatosis [100, 101], dysplasia epiphysealis
hemimelica [102, 103] or non-hereditary syndromes that
occur in multiple bones such as enchondromatosis
(Ollier’s disease) [102, 104]. Given the specific radiologic
and histological expertise needed, it is recommended to
seek for an expert opinion from a bone tumour specialist
or from a national bone tumour registry consisting of
clinicians, radiologists and pathologists, before screening
for germline mutations. 

If the typical Multiple Osteochondroma radiologic
phenotype is present, it is important to evaluate the
patient’s family history to see whether other relatives are
(possibly) affected. From these family members radiologic
studies and, if available, histology of resected lesions can
be examined. If there are other affected family members,
Multiple Osteochondromas can be clinically established. 

Then subsequent EXT mutation analysis is optional.
However it can be useful to screen for germline mutations

in family members presenting a mild or no phenotype
and this will also give insight into the inheritance pattern
(penetrance) of the specific mutation. A known EXT
mutation can also be used for prenatal diagnostics. If
there is no positive family history, Multiple
Osteochondromas cannot be excluded, since it is possible
that the patient is the founder of a new Multiple
Osteochondroma family and these index patients should
be screened for EXT mutations.

Mutation analysis for EXT1 and EXT2 can be
performed on peripheral blood of the patient. This can
be established through PCR and subsequent sequencing
of all exons of EXT1 and EXT2 [30] and/or two-colour
multiplex ligation-dependent probe amplification (MLPA)
[105]. When a mutation in either gene is found, the
Multiple Osteochondromas diagnosis can be confirmed.
If there is no mutation the diagnosis of Multiple
Osteochondromas cannot be excluded, since there is 
a small possibility that the mutation could not be detected
due to technical limitations. With the currently used
methods it is possible to detect point mutations or gross
deletions in 75-88% of the Multiple Osteochondroma
patients [105]. These methods cannot detect positional
changes, like translocations, inversions, insertions or
transpositions. These changes affect the structure of the
gene without changing the sequence or dosage of exons. 

FFoollllooww--uupp

When the diagnosis of Multiple Osteochondromas is
established, patients should have a regular follow-up to
discover potential malignant transformation at an early
stage and enable adequate treatment to be implemented.
To our knowledge, the literature does not mention a
specific clinical and/or radiologic consensus about the
most proper method for the follow-up of patients with
proven Multiple Osteochondromas. The following
pathways for both clinical and radiologic follow-up can
be followed. Localisation of all, relatively larger,
osteochondromas can be established with a base-line
bone scan, which shows increased bone activity within
the skeleton at sites of increased bone turnover, like at
the sites of osteochondromas, but also at the epiphysis
and apophyses of growing bones. Since secondary
peripheral chondrosarcomas are extremely rare before
puberty, this is, therefore, only recommended for patients
who have reached skeletal maturation. Regular follow-
up before that time is not necessary unless the patient
presents with clinical complaints. A number of
osteochondromas will demonstrate a normal uptake of
the radiopharmacon, demonstrating complete
maturation, while others may still show an increased
activity of the radiopharmacon. This finding, at the base-
line, does not immediately and specifically imply
malignant transformation, but can well be explained by,
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as yet, incomplete maturation of the osteochondroma or
just by its distinct size. Furthermore, base-line plain
radiographic examinations of areas that are not
accessible to palpation, like the chest, pelvis and scapula
are recommended, because in these areas of the body
late detection of malignant transformation of an
osteochondroma towards peripheral chondrosarcoma
is most common.

After these base-line examinations, patients with
Multiple Osteochondromas could routinely be seen,
each year or every two years, in the outpatient clinic
for clinical and radiologic follow-up. It should be
emphasised to the patients to come at an earlier time
if changes in their clinical condition occur, such as pain
or growth of a known lesion. It is also important to
realise that no new osteochondromas develop after
skeletal maturation. 

Radiologic follow-up could consist of both plain
radiographs of the pelvis, chest and scapulae in
combination with follow-up bone scans. Changes in
the clinical history and findings, in combination with
changes on the plain radiographs or bone scans,
should be regarded with suspicion. As to changes in
the uptake of the radiopharmacon on bone scans
however, it should be considered that increase of the

uptake does not always indicate malignant
transformation. It can also be a result of trauma or the
formation of an overlying bursa or inflammatory
reaction. Nevertheless, these changes warrant further
examination through plain radiographs and dedicated
magnetic resonance (MR) imaging, including contrast-
enhanced MR sequences. Also the thickness of the
cartilage cap can be monitored with MR imaging. 

Radiologic skeletal surveys, as a means of follow-up,
do not seem to be of additional value. The role of
ultrasound, in the follow-up of lesions, is still controversial
and needs further studies. 

The entire purpose of adequate follow-up is aimed
at the early detection of malignant transformation,
which enables adequate surgical treatment consisting
of en-bloc resection of the lesion and its pseudo-
capsule with tumour-free margins, preferably in an
oncology centre with experience in treating bone
sarcomas. Inadequate primary surgery of a secondary
peripheral chondrosarcoma will inevitably result in
recurrences and can eventually result in the death
caused by local problems or even metastases.

The process of making a Multiple Osteochondroma
diagnosis and patient follow-up is summarized in 
a flowchart (Fig. 7).
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CCoonncclluussiioonn

With all new developments and discoveries in the
genetic, pathological and radiologic behaviour of
osteochondromas and secondary peripheral
chondrosarcomas, it has become possible to screen and
carefully monitor Multiple Osteochondroma patients and
their families. This will enable us to provide patients with
more adequate care and treatment strategies. 

RReeffeerreenncceess

1. Mulder JD, Schütte HE, Kroon HM and Taconis WK. Radiologic
Atlas of Bone Tumors. 2 Ed., Elsevier, Amsterdam 1993.

2. Bovee JVMG and Hogendoorn PCW. Multiple osteochondromas.
In: Fletcher CDM, Unni KK and Mertens F (eds). World Health
Organization Classification of Tumours. Pathology and Genetics
of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.

3. Dahlin’s Bone Tumors General Aspects and Data on 11,087 Cases.
5th Ed., Lippincott-Raven Publishers, Philadelphia 1996.

4. Legeai-Mallet L, Munnich A, Maroteaux P and Le Merrer M.
Incomplete penetrance and expressivity skewing in hereditary
multiple exostoses. Clin Genet 1997; 52: 12-16.

5. Schmale GA, Conrad EU and Raskind WH. The natural history of
hereditary multiple exostoses. J Bone Joint Surg [Am] 1994; 76A:
986-992.

6. Wicklund LC, Pauli RM, Johnston D and Hecht JT. Natural history
study of hereditary multiple exostoses. Am J Med Genet 1995; 55:
43-46.

7. Khurana J, Abdul-Karim F and Bovee JVMG. Osteochondroma.
In: Fletcher CDM, Unni KK and Mertens F (eds). World Health
Organization Classification of Tumours. Pathology and Genetics
of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.

8. Huvos AG. Bone tumors. Diagnosis, treatment, and prognosis. 2
Ed., W.B. Saunders Company, Philadelphia 1991.

9. Cooper A. Exostosis. In: Cooper A and Travers B (eds). Surgical
Essays. Cox&Son, London 1818.

10. Crandall BF, Field LL, Sparkes RS and Spence MA. Hereditary
multiple exostoses; report of a family. Clin Orthop 1983; 190:
217-219.

11. Boyer A. Traite des Maladies Chirurgicales. Ve. Migneret, Paris
1814.

12. Shapiro F, Simon S and Glimcher MJ. Hereditary multiple exostoses.
Anthropometric, roentgenographic, and clinical aspects. J Bone
Joint Surg Am 1979; 61 (6A): 815-824.

13. Willms R, Hartwig C-H, Böhm P and Sell S. Malignant
transformation of a multiple cartilaginous exostosis - a case report.
Int Orthop 1997; 21: 133-136.

14. Springfield DS, Gebhardt MC and McGuire MH. Chondrosarcoma:
a review. J Bone Joint Surg [Am] 1996; 78A: 141-149.

15. Bertoni F, Bacchini P and Hogendoorn PCW. Chondrosarcoma.
In: Fletcher CDM, Unni KK and Mertens F (eds). World Health
Organization Classification of Tumours. Pathology and Genetics
of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.

16. Geirnaerdt MJ, Bloem JL, Eulderink F, Hogendoorn PC and
Taminiau AH. Cartilaginous tumors: correlation of gadolinium-
enhanced MR imaging and histopathologic findings. Radiology
1993; 186 (3): 813-817.

17. Geirnaerdt MJ, Hogendoorn PC, Bloem JL, Taminiau AH and Van
der Woude HJ. Cartilaginous tumors: fast contrast-enhanced MR
imaging. Radiology 2000; 214 (2): 539-546.

18. Evans HL, Ayala AG and Romsdahl MM. Prognostic factors in
chondrosarcoma of bone. A clinicopathologic analysis with
emphasis on histologic grading. Cancer 1977;  40: 818-831.

19. Lamovec J, Spiler M and Jevtic V. Osteosarcoma arising in a solitary
osteochondroma of the fibula. Arch Pathol Lab Med 1999; 123
(9): 832-834.

20. Matsuno T, Ichioka Y, Yagi T and Ishii S. Spindle-cell sarcoma in
patients who have osteochondromatosis. A report of two cases. J
Bone Joint Surg [Am] 1988; 70: 137-141.

21. Bovee JVMG, Sakkers RJB, Geirnaerdt MJA and Taminiau AHM.
Intermediate grade osteosarcoma and chondrosarcoma arising in
an osteochondroma. A case report of a patient with hereditary
multiple exostoses. J Clin Pathol 2002; 55: 226-229.

22. Tsuchiya H, Morikawa S and Tomita K. Osteosarcoma arising from
a multiple exostoses lesion: case report. Jpn J Clin Oncol 1990;
20: 296-298.

23. Ahn J, Ludecke H-J, Lindow S, Horton WA, Lee B, Wagner MJ,
Horsthemke B and Wells DE. Cloning of the putative tumour
suppressor gene for hereditary multiple exostoses (EXT1). Nature
Genet 1995; 11: 137-143.

24. Wuyts W, Van Hul W, Wauters J, Nemtsova M, Reyniers E, Van Hul
EV, De Boulle K, de Vries BB, Hendrickx J, Herrygers I, Bossuyt P,
Balemans W, Fransen E, Vits L, Coucke P, Nowak NJ, Shows TB,
Mallet L, van den Ouweland AM, McGaughran J, Halley DJ and
Willems PJ. Positional cloning of a gene involved in hereditary
multiple exostoses. Hum Mol Genet 1996; 5 (10): 1547-1557.

25. Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D,
Hecht JT, Lovett M and Evans GA. The EXT2 multiple exostoses
gene defines a family of putative tumour suppressor genes. Nature
Genet 1996; 14: 25-32.

26. Raskind WH, Conrad EU III, Matsushita M, Wijsman EM, Wells DE,
Chapman N, Sandell LJ, Wagner M and Houck J. Evaluation of
locus heterogeneity and EXT1 mutations in 34 families with
hereditary multiple exostoses. Hum Mutat 1998; 11 (3): 231-239.

27. Legeai-Mallet L, Margaritte-Jeannin P, Lemdani M, Le Merrer M,
Plauchu H, Maroteaux P, Munnich A and Clerget-Darpoux F. An
extension of the admixture test for the study of genetic heterogeneity
in hereditary multiple exostoses. Hum Genet 1997; 99: 298-302.

28. Philippe C, Porter DE, Emerton ME, Wells DE, Simpson AH and
Monaco AP. Mutation screening of the EXT1 and EXT2 genes in
patients with hereditary multiple exostoses. Am J Hum Genet 1997;
61: 520-528.

29. Hecht JT, Hogue D, Wang Y, Blanton SH, Wagner M, Strong LC,
Raskind W, Hansen MF and Wells D. Hereditary multiple exostoses
(EXT): mutational studies of familial EXT1 cases and EXT-associated
malignancies. Am J Hum Genet 1997; 60: 80-86.

30. Wuyts W, Van Hul W, De Boulle K, Hendrickx J, Bakker E,
Vanhoenacker F, Mollica F, Ludecke HJ, Sayli BS, Pazzaglia UE,
Mortier G, Hamel B, Conrad EU, Matsushita M, Raskind WH and
Willems PJ. Mutations in the EXT1 and EXT2 genes in hereditary
multiple exostoses. Am J Hum Genet 1998; 62: 346-354.

31. Bovee JVMG, Cleton-Jansen AM, Wuyts W, Caethoven G, Taminiau
AHM, Bakker E, Van Hul W, Cornelisse CJ and Hogendoorn PC.
EXT-mutation analysis and loss of heterozygosity in sporadic and
hereditary osteochondromas and secondary chondrosarcomas.
Am J Hum Genet 1999; 65 (3): 689-698.

32. Xu L, Xia J, Jiang H, Zhou J, Li H, Wang D, Pan Q, Long Z, Fan C
and Deng HX. Mutation analysis of hereditary multiple exostoses
in the Chinese. Hum Genet 1999; 105: 45-50.

33. Park KJ, Shin K-H, Ku J-L, Cho T-J, Lee SH, Choi IH, Phillipe C,
Monaco AP, Porter DE and Park JG. Germline mutations in the EXT1
and EXT2 genes in Korean patients with hereditary multiple
exostoses. J Hum Genet 1999; 44: 230-234.

34. Shi YR, Wu JY, Hsu YA, Lee CC, Tsai CH and Tsai FJ. Mutation
screening of the EXT genes in patients with hereditary multiple
exostoses in Taiwan. Genet Test 2002; 6 (3): 237-243.

35. Zak BM, Crawford BE and Esko JD. Hereditary multiple exostoses
and heparan sulfate polymerization. Biochim Biophys Acta 2002;
1573 (3): 346-355.

36. Knudson AG Jr. Mutation and cancer: statistical study of
retinoblastoma. Proc Natl Acad Sci USA 1971; 68 (4): 820-823.



HHeerreeddiittaarryy  CCaanncceerr  iinn  CClliinniiccaall  PPrraaccttiiccee 2004; 2(4)172

37. Carroll KL, Yandow SM, Ward K and Carey JC. Clinical correlation
to genetic variations of hereditary multiple exostoses. J Pediatr
Orthop 1999; 19: 785-791.

38. Francannet C, Cohen-Tanugi A, Le Merrer M, Munnich A,
Bonaventure J and Legeai-Mallet L. Genotype-phenotype
correlation in hereditary multiple exostoses. J Med Genet 2001;
38 (7): 430-434.

39. Le Merrer M, Legeai-Mallet L, Jeannin PM, Horsthemke B, Schinzel
A, Plauchu H, Toutain A, Achard F, Munnich A and Maroteaux P.
A gene for hereditary multiple exostoses maps to chromosome
19p. Hum Mol Genet 1994; 3: 717-722.

40. Wise CA, Clines GA, Massa H, Trask BJ and Lovett M. Identification
and localization of the gene for EXTL, a third member of the
multiple exostoses gene family. Genome Res 1997; 7 (1): 10-16.

41. Wuyts W, Van Hul W, Hendrickx J, Speleman F, Wauters J, De Boulle
K, Van Roy N, Van Agtmael T, Bossuyt P and Willems PJ.
Identification and characterization of a novel member of the EXT
gene family, EXTL2. Eur J Hum Genet 1997; 5: 382-389.

42. Van Hul W, Wuyts W, Hendrickx J, Speleman F, Wauters J, De Boulle
K, Van Roy N, Bossuyt P and Willems PJ. Identification of a third
EXT-like gene (EXTL3) belonging to the EXT gene family. Genomics
1998; 47: 230-237.

43. Arai T, Akiyama Y, Nagasaki H, Murase N, Okabe S, Ikeuchi T,
Saito K, Iwai T and Yuasa Y. EXTL3/EXTR1 alterations in colorectal
cancer cell lines. Int J Oncol 1999; 15 (5): 915-919.

44. Hall BD, Langer LO, Giedion A, Smith DW, Cohen MM Jr., Beals
RK and Brandner M. Langer-Giedion syndrome. Birth Defects Orig
Artic Ser 1974; 10 (12): 147-164.

45. Ludecke H-J, Johnson C, Wagner MJ, Wells DE, Turleau C,
Tommerup N, Latos-Bielenska A, Sandig KR, Meinecke P, Zabel B
and Horsthemke B. Molecular definition of the shortest region of
deletion overlap in the Langer-Giedion syndrome. Am J Hum
Genet 1991; 49: 1197-1206.

46. Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG, Francomano
CA, Puffenberger E, Conrad EU, Schmale G, Schellenberg G,
Wijsman E, Hecht JT, Wells D and Wagner MJ. Genetic
heterogeneity in families with hereditary multiple exostoses. Am J
Hum Genet 1993; 53: 71-79.

47. Ludecke H-J, Ahn J, Lin X, Hill A, Wagner MJ, Schomburg L,
Horsthemke B and Wells DE. Genomic organization and promotor
structure of the human EXT1 gene. Genomics 1997; 40: 351-354.

48. Lohmann DR, Buiting K, Ludecke H-J and Horsthemke B. The
murine Ext1 gene shows a high level of sequence similarity with its
human homologue and is part of a conserved linkage group on
chromosome 15. Cytogenet Cell Genet 1997; 76: 164-166.

49. Lin X and Wells D. Isolation of the mouse cDNA homologous to
the human EXT1 gene responsible for hereditary multiple exostoses.
DNA Seq. 1997; 7 (3-4): 199-202.

50. Bellaiche Y, The I and Perrimon N. Tout-velu is a drosophila
homologue of the putative tumour suppressor EXT1 and is needed
for Hh diffusion. Nature 1998; 394: 85-88.

51. Clines GA, Ashley JA, Shah S and Lovett M. The structure of the
human multiple exostoses 2 gene and characterization of
homologs in mouse and caenorhabditis elegans. Genome Res
1997; 7: 359-367.

52. Wu Y-Q, Heutink P, De Vries BBA, Sandkuijl LA, Van den Ouweland
AMW, Niermeijer MF, Galjaard H, Reyniers E, Willems PJ and
Halley DJ. Assignment of a second locus for multiple exostoses to
the pericentromeric region of chromosome 11. Hum Mol Genet
1994; 3: 167-171.

53. Wuyts W, Ramlakhan S, Van Hul W, Hecht JT, Van den Ouweland
AMW Raskind WH, Hofstede FC, Reyniers E, Wells DE, de Vries
B, Conrad EU, Hill A, Zalatayev D, Weissenbach J, Wagner MJ,
Bakker E, Halley DJJ and Willems PJ. Refinement of the multiple
exostoses locus (EXT2) to a 3-cM interval on chromosome 11.
Am J Hum Genet 1995; 57: 382-387.

54. Stickens D and Evans GA. Isolation and characterization of the
murine homolog of the human EXT2 multiple exostoses gene.
Biochem Mol Med 1997; 61: 16-21.

55. Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X and Lin X.
Distinct and collaborative roles of Drosophila EXT family proteins
in morphogen signalling and gradient formation. Development
2004; 131 (7): 1563-1575.

56. Potocki L and Shaffer LG. Interstitial deletion of 11(p11.2p12): a
newly described contiguous gene deletion syndrome involving the
gene for hereditary multiple exostoses (EXT2). Am J Med Genet
1996; 62: 319-325.

57. Bartsch O, Wuyts W, Van Hul W, Hecht JT, Meinecke P, Hogue D,
Werner W, Zabel B, Hinkel GK, Powell CM, Shaffer LG and Willems
PJ. Delineation of a contiguous gene syndrome with multiple
exostoses, enlarged parietal foramina, craniofacial dysostosis, and
mental retardation, caused by deletions on the short arm of
chromosome 11. Am J Hum Genet 1996; 58: 734-742.

58. Esko JD and Selleck SB. Order out of chaos: assembly of ligand
binding sites in heparan sulfate. Annu Rev Biochem 2002; 71:
435-471.

59. Lind T, Tufaro F, McCormick C, Lindahl U and Lidholt K. The
putative tumor suppressors EXT1 and EXT2 are glycosyltransferases
required for the biosynthesis of heparan sulfate. J Biol Chem 1998;
273 (41): 26265-26268.

60. Kitagawa H, Shimakawa H and Sugahara K. The tumor suppressor
EXT-like gene EXTL2 encodes an alpha1, 4-N-
acetylhexosaminyltransferase that transfers N-acetylglucosamine
to the common glycosaminoglycan-protein linkage region. J Biol
Chem 1999; 274 (20): 13933-13937.

61. McCormick C, Duncan G and Tufaro F. New perspectives on the
molecular basis of hereditary bone tumours. Mol Med Today 1999;
5: 481-486.

62. McCormick C, Duncan G, Goutsos KT and Tufaro F. The putative
tumor suppressors EXT1 and EXT2 form a stable complex that
accumulates in the Golgi apparatus and catalyzes the synthesis of
heparan sulfate. Proc Natl Acad Sci USA 2000; 97 (2): 668-673.

63. Rubin JB, Choi Y and Segal RA. Cerebellar proteoglycans regulate
sonic hedgehog responses during development. Development
2002; 129 (9): 2223-2232.

64. Cardin AD and Weintraub HJ. Molecular modeling of protein-
glycosaminoglycan interactions. Arteriosclerosis 1989; 9 (1):
21-32.

65. Knudson CB and Knudson W. Cartilage proteoglycans. Semin Cell
Dev Biol 2001; 12 (2): 69-78.

66. Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD and
Sanderson RD. Heparan sulfate proteoglycans as adhesive and
anti-invasive molecules. Syndecans and glypican have distinct
functions. J Biol Chem 1998; 273 (35): 22825-22832.

67. David G, Bai XM, Van der Schueren B, Marynen P, Cassiman JJ
and Van den Berghe H. Spatial and temporal changes in the
expression of fibroglycan (syndecan-2) during mouse embryonic
development. Development 1993; 119 (3): 841-854.

68. Zimmermann P and David G. The syndecans, tuners of
transmembrane signaling. FASEB J 1999; 13 Suppl:S91-S100:
S91-S100.

69. Seghatoleslami MR and Kosher RA. Inhibition of in vitro limb
cartilage differentiation by syndecan-3 antibodies. Dev Dyn 1996;
207 (1): 114-119.

70. Shimo T, Gentili C, Iwamoto M, Wu C, Koyama E and Pacifici M.
Indian hedgehog and syndecans-3 coregulate chondrocyte
proliferation and function during chick limb skeletogenesis. Dev
Dyn 2004; 229 (3): 607-617.

71. Veugelers M, De Cat B, Ceulemans H, Bruystens AM, Coomans
C, Durr J, Vermeesch J, Marynen P and David G. Glypican-6, a
new member of the glypican family of cell surface heparan sulfate
proteoglycans. J Biol Chem 1999; 274 (38): 26968-26977.

72. SundarRaj N, Fite D, Ledbetter S, Chakravarti S and Hassell JR.
Perlecan is a component of cartilage matrix and promotes
chondrocyte attachment. J Cell Sci 1995; 108 (Pt 7): 2663-2672.

73. Ponta H, Sherman L and Herrlich PA. CD44: from adhesion
molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4
(1): 33-45.

Liesbeth Hameetman et al



HHeerreeddiittaarryy  CCaanncceerr  iinn  CClliinniiccaall  PPrraaccttiiccee 2004; 2(4) 173

Review Multiple Osteochondromas

74. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R,
Smit L, David G, Hartmann G, Gherardi E and Pals ST. Heparan
sulfate-modified CD44 promotes hepatocyte growth factor/scatter
factor-induced signal transduction through the receptor tyrosine
kinase c-Met. J Biol Chem 1999; 274 (10): 6499-6506.

75. The I, Bellaiche Y and Perrimon N. Hedgehog movement is
regulated through tout velu -dependant synthesis of a heparan
sulfate proteoglycan. Mol Cell 1999; 4 (4): 633-639.

76. Bornemann DJ, Duncan JE, Staatz W, Selleck S and Warrior R.
Abrogation of heparan sulfate synthesis in Drosophila disrupts the
Wingless, Hedgehog and Decapentaplegic signaling pathways.
Development 2004; 131 (9): 1927-1938.

77. Stickens D, Brown D and Evans GA. EXT genes are differentially
expressed in bone and cartilage during mouse embryogenesis. Dev
Dyn 2000; 218 (3): 452-464.

78. Amling M, Neff L, Tanaka S, Inoue D, Kuida K, Weir E, Philbrick
WM, Broadus AE and Baron R. Bcl-2 lies downstream of
parathyroid hormone related peptide in a signalling pathway that
regulates chondrocyte maturation during skeletal development. J
Cell Biol 1997; 136: 205-213.

79. Van der Eerden BCJ, Karperien M, Gevers EF, Lowik CWGM and
Wit JM. Expression of Indian Hedgehog, PTHrP and their receptors
in the postnatal growth plate of the rat: evidence for a locally acting
growth restraining feedback loop after birth. J Bone Miner Res
2000; 15 (6): 1045-1055.

80. Erlebacher A, Filvaroff EH, Gitelman SE and Derynck R. Toward a
molecular understanding of skeletal development. Cell 1995; 80:
371-378.

81. Goldfarb M. Functions of fibroblast growth factors in vertebrate
development. Cytokine and Growth Factor Reviews 1996; 7 (4):
311-325.

82. Kato Y and Iwamoto M. Fibroblast growth factor is an inhibitor of
chondrocyte terminal differentiation. J Biol Chem 1990; 265 (10):
5903-5909.

83. Iwamoto M, Shimazu A, Nakashima K, Suzuki F and Kato Y.
Reduction of basic fibroblasts growth factor receptor is coupled
with terminal differentiation of chondrocytes. J Biol Chem 1991;
266 (1): 461-467.

84. Liu Z, Xu J, Colvin JS and Ornitz DM. Coordination of
chondrogenesis and osteogenesis by fibroblast growth factor 18.
Genes Dev 2002; 16 (7): 859-869.

85. Sahni M, Ambrosetti D-C, Mansukhani A, Gertner R, Levy D and
Basilico C. FGF signaling inhibits chondrocyte proliferation and
regulates bone development through the STAT-1 pathway. Genes
Dev 1999; 13: 1361-1366.

86. Naski MC, Colvin JS, Coffin JD and Ornitz DM. Repression of
hedgehog signaling and BMP4 expression in growth plate cartilage
by fibroblast growth factor receptor 3. Development 1998; 125:
4977-4988.

87. Bridge JA, Nelson M, Orndal C, Bhatia P and Neff JR. Clonal
karyotypic abnormalities of the hereditary multiple exostoses
chromosomal loci 8q24.1 (EXT1) and 11p11-12 (EXT2) in patients
with sporadic and hereditary osteochondromas. Cancer 1998; 82:
1657-1663.

88. Mertens F, Rydholm A, Kreicbergs A, Willen H, Jonsson K, Heim S,
Mitelman F and Mandahl N. Loss of chromosome band 8q24 in
sporadic osteocartilaginous exostoses. Genes Chromosomes
Cancer 1994; 9: 8-12.

89. Bovee JVMG, Royen MV, Bardoel AFJ, Rosenberg C, Cornelisse CJ,
Cleton-Jansen AM and Hogendoorn PC. Near-haploidy and
subsequent polyploidization characterize the progression of peripheral
chondrosarcoma. Am J Pathol 2000; 157 (5): 1587-1595.

90. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM.
Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-
deficient mice. Dev Biol 2000; 224 (2): 299-311.

91. Koziel L, Kunath M, Kelly OG and Vortkamp A. Ext1-dependent
heparan sulfate regulates the range of Ihh signaling during
endochondral ossification. Dev Cell 2004; 6 (6): 801-813.

92. Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R and Cole WG.
Heparan sulfate abnormalities in exostosis growth plates. Bone
2002; 31 (1): 199-204.

93. Yamada S, Busse M, Ueno M, Kelly OG, Skarnes WC, Sugahara
K and Kusche-Gullberg M. Embryonic fibroblasts with a gene trap
mutation in EXT1 produce short heparan sulphate chains. J Biol
Chem 2004; 279 (31): 32134-32141.

94. Bovee JVMG, Van den Broek LJCM, Cleton-Jansen AM and
Hogendoorn PCW. Up-regulation of PTHrP and Bcl-2 expression
characterizes the progression of osteochondroma towards
peripheral chondrosarcoma and is a late event in central
chondrosarcoma. Lab Invest 2000; 80: 1925-1933.

95. Bovee JVMG, Cleton-Jansen AM, Kuipers-Dijkshoorn N, Van den
Broek LJCM, Taminiau AHM, Cornelisse CJ and Hogendoorn PC.
Loss of heterozygosity and DNA ploidy point to a diverging genetic
mechanism in the origin of peripheral and central chondrosarcoma.
Genes Chromosomes Cancer 1999; 26: 237-246.

96. Bovee JVMG, Sciot R, Cin PD, Debiec-Rychter M, Zelderen-Bhola
SL, Cornelisse CJ and Hogendoorn PC. Chromosome 9 alterations
and trisomy 22 in central chondrosarcoma: a cytogenetic and DNA
flow cytometric analysis of chondrosarcoma subtypes. Diagn Mol
Pathol 2001; 10 (4): 228-235.

97. Xiang JH, Spanier SS, Benson NA and Braylan RC. Flow cytometric
analysis of DNA in bone and soft-tissue tumors using nuclear
suspensions. Cancer 1987; 59: 1951-1958.

98. Helio H, Karaharju E and Nordling S. Flow cytometric determination
of DNA content in malignant and benign bone tumours. Cytometry
1985; 6: 165-171

99. Mandahl N, Baldetorp B, Ferno M, Akerman M, Rydholm A, Heim
S, Willen H, Killander D and Mitelman F. Comparative cytogenetic
and DNA flow cytometric analysis of 150 bone and soft-tissue
tumors. Int J Cancer 1993; 53: 358-364.

100. Bassett GS and Cowell HR. Metachondromatosis. Report of four
cases. J Bone Joint Surg Am 1985; 67 (5): 811-814.

101. Maroteaux P. Metachondromatosis. Z Kinderheilkd 1971; 109
(3): 246-261.

102. Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE
and Temple HT. From the archives of the AFIP. Enchondroma versus
chondrosarcoma in the appendicular skeleton: differentiating
features. Radiographics 1998; 18 (5): 1213-1237.

103. Fairbank TJ. Dysplasia epiphysialis hemimelica (tarso-ephiphysial
aclasis). J Bone Joint Surg Br 1956; 38-B (1): 237-257.

104. Ollier M. Dyschondroplasie. Lyon Med 1900; 93: 23-25.
105. White SJ, Vink GR, Kriek M, Wuyts W, Schouten J, Bakker B,

Breuning MH and den Dunnen JT. Two-color multiplex ligation-
dependent probe amplification: detecting genomic rearrangements
in hereditary multiple exostoses. Hum Mutat 2004; 24 (1): 86-92.

106. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS,
Abeysinghe S, Krawczak M and Cooper DN. Human Gene
Mutation Database (HGMD): 2003 update. Hum Mutat 2003;
21 (6): 577-581.

107. Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M,
Lindahl U and Sugahara K. Human tumor suppressor EXT gene
family members EXTL1 and EXTL3 encode alpha 1,4- N-
acetylglucosaminyltransferases that likely are involved in heparan
sulfate/heparin biosynthesis. Proc Natl Acad Sci USA 2001; 98
(13): 7176-7181.

108. Esko JD and Lindahl U. Molecular diversity of heparan sulfate. J
Clin Invest 2001; 108 (2): 169-173.

109. Couchman JR. Syndecans: proteoglycan regulators of cell-surface
microdomains? Nat Rev Mol Cell Biol 2003; 4 (12): 926-937.

110. Nybakken K and Perrimon N. Heparan sulfate proteoglycan
modulation of developmental signaling in Drosophila. Biochim
Biophys Acta 2002; 1573 (3): 280-291.


	1897-4287-2-4-161.pdf
	Multiple2.pdf
	Multiple3.pdf

