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Hereditary breast cancer: ever more pieces to the
polygenic puzzle
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Abstract

Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over
the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast
cancer case–control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes
involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through
recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide
polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing
mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen
receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and
discuss their implications for risk prediction and clinical practice.
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Introduction
Hereditary breast cancer has been formally investigated
since the middle of the 19th century [1-3]. About thirty
years ago, epidemiological and genetic linkage studies of
multiple-case families have guided the identification of
TP53 mutations as a cause of Li-Fraumeni Syndrome
[4-6] and of BRCA1 and BRCA2 as first genes in which
mutations strongly predispose to breast and ovarian can-
cer [7,8]. There are further rare syndromes which in-
clude the occurrence of breast cancer as part of the
disease spectrum, and the underlying genes have been
identified by positional cloning. Apart from Li-Fraumeni
Syndrome, these include Cowden Disease (PTEN) [9,10],
Peutz-Jeghers Syndrome (LKB1/STK11) [11,12], Lynch
Syndrome (MSH2,MLH1) [13], Bloom’s Syndrome (BLM)
[14] and Ataxia-Telangiectasia (ATM) [15]. In addition, fa-
milial lobular breast cancer has been associated with
germ-line mutations in CDH1, the gene for E-cadherin
[16,17]. Although the above-mentioned syndromes are
rare, they need to be kept in mind if a breast cancer pa-
tient presents with a more complex disorder or suspicious
family history. For the recessive Ataxia- Telangiectasia and
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Bloom’s Syndrome, the monoallelic occurrence of muta-
tions predisposes heterozygous carriers outside of syn-
drome families to cancer, as will be described in more
detail below.
While the identification of genes underlying these syn-

dromes has been largely achieved through linkage ana-
lysis of large multiple-case pedigrees and positional
cloning, these genes represent only a small subset of the
estimated heritable fraction and further linkage studies
have been unfruitful. However, hereditary breast cancer
syndromes only mark the extreme end of a wide spectrum
of genetically influenced breast carcinomas. During the
past years evidence has been accumulated that breast can-
cer is a polygenic trait and also that several more suscepti-
bility genes exist [18-21]. Their mutations have differential
impact according to the minor allele frequencies and the
magnitude of the allelic effect, which generally show an
inversely proportional relationship (Figure 1) [22]. In the
following, we briefly summarize present knowledge about
breast cancer susceptibility genes and discuss their impli-
cations for risk prediction and clinical practice.
Identification of breast cancer susceptibility alleles
The most common methods to explore the genetic basis
of hereditary breast cancer have been family and linkage
studies, candidate gene sequencing and case–control
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Figure 1 Frequency and risk distribution of breast cancer susceptibility alleles. Minor allele frequency of breast cancer susceptibility alleles
plotted against their estimated relative risk. Selected genes are shown for high-risk, intermediate-risk and low-risk categories. Figure modified
after Ref. [22].
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association studies. This has led to the identification of
rare mutations conferring intermediate or high risks for
breast cancer (with relative risks above two-fold) as well
as multiple common polymorphic loci that harbour low-
penetrance alleles.

I. Rare mutations with a high to intermediate penetrance:

Genes harbouring breast-cancer associated mutations
with an estimated high or intermediate penetrance as
summarised in Table 1. Many of them have turned out
to encode proteins that act in concert with each other in
an intracellular DNA damage signalling and repair net-
work that responds to double-strand breaks or interstrand
crosslinks and ensures the error-free damage removal
through means of homology-directed recombinational
repair (Figure 2). Nevertheless, lifetime risks can be quite
different between the genes as will be described in more
detail below.
- BRCA1 and BRCA2: The prototypic BRCA1 and

BRCA2 mutations confer a very high life-time risk for
breast cancer in the range of 55-85% for BRCA1 and 35-
60% for BRCA2, compared with an about 10% popula-
tion risk [60-62]. Life-time risk for ovarian cancer is also
high and may be up to 40% for BRCA1 mutation car-
riers. Importantly, both the risks for breast and ovarian
cancer can also be modified by additional gene loci such
as SNPs in RAD51 or BNC2 (Refs. [63-65], and see
below). The spectrum of tumours in families segregating
BRCA1 and BRCA2 mutations includes pancreatic,
prostate, colon and skin cancers. Monoallelic BRCA2
mutations have also been associated with male breast
cancer and have been observed in Li-Fraumeni families.
Biallelic mutations in BRCA2 give rise to the recessive
developmental disorder, Fanconi Anemia D1 [23]. In
case of BRCA1, homozygosity for severe mutations has
not been confirmed and may be embryonically lethal.
However, compound heterozygosity for two BRCA1 mu-
tations, one of them apparently hypomorphic, has been
described in a single patient with short stature, micro-
cephaly and early ovarian cancer [66]. Consistent with
these findings, the BRCA1 and BRCA2 genes both
encode proteins involved in the repair of DNA double
strand breaks [67]. While BRCA2 is mainly involved in
homology-directed recombinational repair, BRCA1 may
serve as a regulatory platform more upstream in
assisting the signalling of breaks and the choice of repair
pathways. BRCA1 is also involved in the transcriptional
regulation of the estrogen and progesterone receptors.
BRCA1 mutated breast cancers are usually estrogen-
receptor negative and have a basal phenotype [67], while
BRCA2 mutated tumours exhibit a broader spectrum of
phenotypes.
BRCA1 and BRCA2 mutations are usually truncating,

although pathogenic missense mutations have also been
described in crucial functional domains such as the
BRCA1 RING domain. There seems to be allele-specific
expressivity as some of the mutations appear to confer
higher risks for ovarian cancer than others, and ovarian
cluster regions have been defined for both genes [68-70].
It has also been noted that not all mutations in BRCA1
and BRCA2 are highly penetrant for breast or ovarian can-
cer. Variants such as p.R1699Q in BRCA1 or p.K3326X in
BRCA2 seem to be associated with rather low, though



Table 1 Genes with intermediate to high penetrance mutations for breast cancer

Gene Monoallelic mutation Biallelic mutations Risk for breast cancer Reference

BRCA1 Breast and ovarian cancer Microcephaly and growth disorder high [7,23]

BRCA2 Breast and ovarian cancer Fanconi anemia type D1 high [8,24]

TP53 Li Fraumeni Syndrome - high [5,6]

PTEN PTEN harmatoma tumour syndrome
(Cowden Disease)

- high [9,10]

LKB1 Peutz-Jeghers Syndrome - high [11,12]

MLH1 Lynch Syndrome - probably intermediate
(high for endometrial and colon cancer)

[13]

MSH2 Lynch Syndrome/Muir-Torre Syndrome - probably intermediate
(high for endometrial and colon cancer)

[13]

CDH1 Lobular breast cancer,
diffuse gastric cancer

- high [16,17]

PALB2 Breast cancer Fanconi anemia type N intermediate to high [25,26]

UIMC1 Breast cancer1 - level not yet known [27]

FAM175A Breast cancer1 - level not yet known [28]

RAD51C Breast and ovarian cancer2 Fanconi anemia type O low to intermediate (high for ovarian cancer) [29,30]

RAD51D Breast and ovarian cancer2 - low to intermediate (high for ovarian cancer) [31,32]

BRIP1 Breast and ovarian cancer Fanconi anemia type J low to intermediate (high for ovarian cancer) [33,34]

ATM Breast cancer, pancreatic cancer Ataxia telangiectasia intermediate [15,35-39]

MRE11A Breast cancer1 Ataxia telangiectasia-like disorder level not yet known [40]

NBN Breast cancer, prostate cancer Nijmegen Breakage syndrome intermediate [41-43]

RAD50 Breast cancer Nijmegen Breakage-like disorder intermediate [44]

BLM Breast cancer Bloom’s Syndrome intermediate [45,46]

FANCC Breast cancer1 Fanconi anemia type C intermediate in FA blood relatives [47,48]

FANCM Breast cancer1 Fanconi anemia type M probably intermediate [49]

SLX4 Breast cancer1 Fanconi anemia type P level not yet known [50,51,84]

XRCC2 Breast cancer1 - level not yet known [52,82]

CHEK2 Breast cancer,prostate cancer breast cancer intermediate [53-58]

PPM1D Breast cancer3, ovarian cancer3 - possibly intermediate (high for ovarian cancer),
non-inherited

[59]

Legend to Table 1:
Twenty-five known or currently debated susceptibility genes harbouring intermediate or high risk mutations for breast cancer. Several of them give rise to
developmental syndromes in the homozygous or compound heterozygous state as listed in the third column. The risk ranges for monoallelic mutations, as
provided in column 4, are estimates for breast cancer from either family studies or case–control studies; intermediate risk 2–5, high risk > 5. 1Mutations in UIMC1,
FAM175A, MRE11A, FANCC, FANCM, SLX4 and XRCC2 have been observed in very few breast cancer patients so far, therefore their possible risks are yet poorly
defined. 2Mutations in RAD51C and RAD51D have been observed in breast cancer patients with a family history of ovarian cancer suggesting that they are
primarily ovarian cancer susceptibility genes. 3Mutations in PPM1D are non-inherited, somatic mosaic mutations that have been reported to be associated with
breast and ovarian cancer.
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significant, breast cancer risks [71,72]. This indicates that,
although BRCA1 and BRCA2 are often referred to as
“high-penetrance genes”, their mutational heterogeneity
may produce a more diverse spectrum of allelic effects.
- PALB2: Subsequently, the “partner and localiser of

BRCA2”, PALB2, has been identified as another breast
cancer susceptibility gene [73,74]. The PALB2 protein
bridges BRCA1 and BRCA2 and synergizes in their
function in recombinational DNA repair. Mutations in
PALB2 predispose to breast cancer and gastric cancer,
and the penetrance for breast cancer in Finnish
multiple-case families has been found similarly high as
for BRCA2 mutations [25]. There is less evidence that
PALB2 mutations predispose to ovarian cancer, although
founder mutations have been identified in ovarian can-
cer patients from Poland and Russia [75,76]. Another
founder mutation in PALB2 is recurrent in British and
Australian breast cancer patients, including multiple-case
families [26]. Altogether, PALB2 emerges as a third im-
portant breast cancer susceptibility gene with moderate-
to high penetrance mutations for breast cancer.
- UIMC1/ FAM175A/ BABAM1: The binding of

BRCA1 to ubiquitylated and sumoylated histones at the
site of double strand breaks is mediated by the ubiquitin-
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Figure 2 Network of breast cancer susceptibility proteins in DNA damage signalling and repair. Functional interplay between several
known or candidate breast cancer susceptibility gene products in the intracellular response to either DNA double strand breaks (left side) or
interstrand crosslinks (right side). Sensed by the Mre11-RAD50-NBN complex or by the Fanconi anemia core proteins, the respective signalling
pathways merge into cell cycle arrest/apoptosis as mediated through p53, and into homology-directed recombinational repair mediated by
BRCA1, PALB2, BRCA2, and the RAD51 paralogs. As mentioned in the text and in Table 1, some of the underlying genes are evidenced but have
not yet been finally confirmed as bona fide breast cancer susceptibility genes, and some may mainly constitute ovarian cancer susceptibility
genes. The genes for MERIT40, MDM4, and RAD51B harbour common polymorphisms associated with breast cancer, and RAD51 harbours a
common SNP associated with breast cancer risk in BRCA2 mutation carriers.
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interaction motif containing protein UIMC1 (better
known as RAP80) through binding the FAM175A gene
product ABRAXAS (also known as ABRA1 or CCDC98)
that interacts with BRCA1 in a complex stabilised by
MERIT40, the product of the BABAM1 gene [77]. Only
few studies have addressed the role of UIMC1 or
FAM175Amutations in breast cancer susceptibility. Famil-
ial breast cancer screening has revealed a rare alteration in
the RAP80 UIM domain that impairs DNA damage re-
sponse function [27], and an ABRAXAS mutation that
disrupts nuclear localisation has been observed in breast
cancer patients with mainly lobular tumour histology [28].
In addition, BABAM1 has emerged as a significant low-
penetrance risk locus for triple-negative breast cancer in
genome-wide association studies as will be discussed
further below.
- RAD51 paralogs: The fact that BRCA1, BRCA2 and

PALB2 function together in the homology-directed
recombinational repair of DNA double-strand breaks
has soon prompted further investigation of candidate
genes in this biological pathway. RAD51 is a key protein
that mediates homologous recombination but apart from
rare missense variants with uncertain significance, there
have been no clearly pathogenic mutations in the coding
region of the RAD51 proto-oncogene [78]. However, a
regulatory variant 135G/C in the RAD51 promoter acts
as a genetic modifier of BRCA2 mutations [63]. Similarly,
low-penetrance variants at the RAD51L1 locus (also
known as RAD51B) have recently been associated with
breast cancer (see further below). Mutation analyses in
further genes of RAD51 paralogs have uncovered RAD51C
and RAD51D as susceptibility genes in hereditary breast
and ovarian cancer families [29-31]. The initial data indi-
cated that these mutations were specifically associated
with a family history of ovarian cancer and were not over-
represented in breast cancer patients outside of ovarian
cancer families [29-32]. However, mutations in RAD51C
and RAD51D are collectively very rare and their risk pat-
tern and tumour spectrum remains to be fully explored.
Additional components of homologous recombinational
repair complexes include RAD52, RAD54, XRCC2 and
XRCC3. The RAD52 gene harbours two polymorphic stop
codons which did not appear to confer a largely increased
breast cancer risk, although minor risks have not been
excluded [79,80]. A single missense variant but no clearly
pathogenic mutation has been reported in RAD54 [81]. A
potentially disease-causing mutation has been found in
XRCC2 in a recent exome sequencing study of British
breast cancer patients [82]. However, follow-up studies in
other European populations did not detect XRCC2 muta-
tions indicating that these are very rare [52]. Altogether,
mutations in RAD51 paralogs appear to exist at a low level
in breast cancer but their contribution is small in most, if
not all populations.
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- Additional Fanconi Anemia genes: Homology-
directed recombinational repair complexes are a con-
served repair platform that are shared by at least two
convergent signalling pathways, the ATM-mediated sig-
nalling pathway triggered by DNA double-strand breaks,
and the Fanconi Anemia protein pathway triggered by
interstrand crosslinks. Since it had been found that some
breast and ovarian cancer susceptibility alleles, e.g. in
BRCA2 (the FANCD1 gene), PALB2 (the FANCN gene)
or RAD51C (the FANCO gene), cause Fanconi Anemia
(FA) in the homozygous state, it has been reasonable to
assess further FA genes for their role in breast and ovar-
ian cancer. So far, mutations of the BRIP1 gene have
been associated with FA in the biallelic state and with
breast cancer in the monoallelic state, although the
risk for breast cancer appears moderate [33]. The BRIP1
protein, also known as FANCJ or BACH1, acts as a
BRCA1- associated helicase, and mutations of BRIP1 also
predispose to ovarian cancer with apparently higher
penetrance [34]. There is less evidence implicating the
FA core proteins in breast cancer [83] but exome se-
quencing did uncover truncating mutations of FANCC
and of FANCM in single studies [47,49] and rare trun-
cating mutations have also been observed in SLX4 (the
FANCP gene) [50,51,84] suggesting that more FA genes
might harbour rare breast cancer susceptibility alleles at
a very low frequency. Their penetrance is unknown,
however, the difficulties to confirm very early reports of
an increased breast cancer risk in obligate heterozygotes
from FA families may indicate that the risks are genetic-
ally heterogeneous and moderate on average, with a pos-
sible preponderance of FANCC [48].
- ATM: It has been known for long that blood relatives

of patients with the neurodegenerative disorder Ataxia-
Telangiectasia (A-T) face an increased breast cancer risk
[35]. Homozygous A-T patients usually do not survive
into late adulthood, but a few females with attenuated
A-T have been reported to develop bilateral breast can-
cer [15]. The gene mutated in Ataxia-Telangiectasia,
ATM, encodes a master protein kinase that orchestrates
the cellular response to DNA double-strand breaks and
controls via phosphorylation hundreds of proteins in-
volved in cell cycle control, repair and apoptosis, among
them BRCA1, BRCA2, BLM, TP53, CHEK2 and many
other tumour suppressors [36]. Truncating mutations in
ATM appear to confer an about three-fold increased breast
cancer risk to heterozygous carriers [37-39], and heterozy-
gotes may account for 0 · 5-1% of most populations.
- MRE11A/ RAD50/ NBN: At the early steps of DNA

double strand break signalling, chromosome breaks are
sensed and the ATM protein is activated via the MRN
complex consisting of the proteins MRE11A, RAD50,
and NBN [85]. The NBN gene underlies Nijmegen
Breakage Syndrome (NBS), which is most prevalent in
Eastern Europe due to a Slavic founder mutation [86].
While biallelic mutations cause NBS, a cancer-prone de-
velopmental condition with early mortality, heterozygous
carriers face an about 3–5 fold increased breast cancer
risk [41-43]. Similarly, biallelic mutations in RAD50 give
rise to a NBS-like disorder whereas heterozygotes for a
Finnish founder mutation are predisposed towards breast
cancer [44,87]. MRE11A also is a gene for an A-T like dis-
order though there has been only one study to associate
MRE11A mutations with breast cancer so far [40,88].
Germ-line mutations in either of the three genes were also
identified in an ovarian cancer sequencing study [89].
Thus, similar to the Fanconi anemia proteins, several com-
ponents of DNA double strand break sensing complexes
seem to be target of germ-line mutations in breast and
ovarian cancer susceptibility.
- BLM: Another such gene that has recently been im-

plicated in breast cancer susceptibility, is BLM, the gene
mutated in Bloom’s Syndrome [90]. Bloom’s Syndrome
(BS) is an autosomal recessive syndrome associated with
short stature, premature aging and a high propensity to
develop malignancies including breast cancer [14]. Cells
from BS patients exhibit enhanced levels of sister chro-
matid exchanges, which reflects a hyperrecombinational
phenotype as a consequence of BLM mutations and
dysfunction of the encoded RecQ-type DNA helicase. A
nonsense mutation in BLM, initially been observed in
few BS patients, has been associated with breast cancer in
Slavic populations, and the presently available evidence
for BS mutations indicates an approximately 2–5 fold in-
crease in breast cancer risk for heterozygotes [45,46,91].
- CHEK2: One of the major targets of the ATM kinase

is CHEK2 which itself phosphorylates further tumour
suppressor proteins, including p53 and BRCA1, in re-
sponse to DNA damage [92]. CHEK2 had initially been
found mutated in Li-Fraumeni patients and one of these
mutations, c.1100delC, has subsequently been associated
with familial breast cancer [53,54]. Heterozygous carriers
have been reported with a 2–3 fold increase in breast
cancer risk, with rare homozygotes being found at a
much higher risk [55,56]. In Eastern Europe, two further
truncating mutations have been associated with at least
similarly high breast cancer risks, whereas a missense
mutation, p.I157T, has a lower penetrance [41,57,58].
There has also been some evidence for an association of
CHEK2 mutations with ovarian cancer and for additional
malignancies suggesting a more general role in cancer
predisposition [89,93]. It is interesting to note that, al-
though CHEK2 interacts with BRCA1 in the same path-
way, its mutations are significantly associated with
estrogen receptor positive breast tumours, indicating an
impact on tumour etiology that is different from BRCA1.
- PPM1D: Large-scale sequencing has identified

truncating mutations in the p53-inducible protein
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phosphatase PPM1D which were specifically associated
with breast cancer and ovarian cancer [59]. PPM1D en-
codes the oncogenic phosphatase WIP1 that antagonizes
ATM-mediated p53 phosphorylation. By contrast with
the other genes discussed above, all of the identified
PPM1D mutations were mosaic in lymphocyte DNA
and, where tested, were not observed in breast or ovar-
ian tissue, suggesting a late origin in the germ-line. Their
mechanism of action in breast or ovarian cancer devel-
opment is presently unknown. Somatic mosaicism has
previously been observed for TP53 mutations outside of
Li-Fraumeni families [89] suggesting that, in addition to
classical heritable genetic factors, mosaic mutations may
also contribute to the genetic predisposition to breast
and ovarian cancer. These observations, if confirmed,
could have important consequences for mutational
screening as well as counselling. Certainly, the origin
and frequency of mosaic mutations need to be studied
in more detail before final conclusions can be derived.

II. Polymorphic variants with low penetrance:

Beyond the genes with relatively rare mutations
discussed above, common polymorphisms have been
predicted to significantly impact on risk and prevention
if breast cancer were regarded as a polygenic disease
[94]. Several polymorphic loci are meanwhile known
which influence the risk of breast cancer (Table 2). This
has been mainly achieved through genome-wide associ-
ation studies (GWAS) of single nucleotide polymorph-
ism by large consortia during the past six years. The
published GWAS efforts have uncovered over 70 genomic
loci for breast cancer at a genome-wide significance level
[72,95-118]. All these loci harbour low-penetrance alleles
with allelic odds ratios less than 1 · 5. Apart from a coding
variant in DCLRE1B (the gene for the SNM1B/Apollo
protein involved in DNA cross-link repair) and synonym-
ous variants in BABAM1 and TERT, the majority of
identified variants are either intronic or intergenic. The
observed intronic and intergenic variants may affect gen-
omic regions important for the regulation of gene expres-
sion and/or gene function. As these loci still explain only
a small part of the heritable fraction, it is likely that the num-
bers will increase rapidly. Presently known GWAS loci
now cover approximately 15% of the familial relative risk,
compared to about 21% captured bymoderate- to high pene-
trance alleles. But evidence suggests that several hundreds
of low-penetrance breast cancer loci might exist, meaning
that even with the numbers reached so far, studies have
merely grazed the surface of the iceberg [72].
Many of the identified GWAS loci appear to be spe-

cific for breast carcinomas. For example, the gene for
fibroblast growth factor receptor 2, FGFR2, harbours
variants associated with breast but not ovarian cancer
[95,96] and breast cancer-associated variants in this gene
appear to regulate the transcriptional activation of
FGFR2 in an estrogen-dependent manner [131]. The
interaction with estrogen signalling may also explain
why the association of some variants is restricted to
ER-positive breast carcinomas (Table 2). Several of the
GWAS loci further modify the risk for BRCA1 or
BRCA2 mutation carriers [132]. In some instances, vari-
ants have been observed to differentially associate with
breast cancer risk in BRCA1 or BRCA2 carriers, and one
variant has been reported to specifically associate with
BRCA2 mutations [118]. Additionally, variants at the
RAD51L1 and TOX3 loci have independently been iden-
tified in a GWAS for male breast cancer [111].
A minor group of common susceptibility loci has

turned out to be relevant for other common cancers as
well, perhaps due to their general relevance for genome
integrity [133]. Some loci appear to influence both breast
and ovarian cancer risk such as BABAM1, TERT, and the
protooncogene MYC on chromosome 8q24. Variants at
the BABAM1 locus, encoding a BRCA1 binding partner
also known as MERIT40, have been specifically associ-
ated with triple-negative breast cancer and serous epi-
thelial ovarian cancer, which resembles the picture seen
with BRCA1 mutations [102,134]. A closer inspection of
the TERT locus, encoding a component of telomerase,
has uncovered three independent regions of strong asso-
ciation with breast or ovarian cancer that only partially
overlap and appear to act through different mechanisms
of transcriptional regulation or splicing, respectively
[114]. Similarly, a closer inspection of the 8q24 locus up-
stream of MYC has indicated that the associations with
different cancers were caused by independent variants at
the same locus, possibly explained by tissue-specific
regulation of gene expression through long-distance ef-
fects of enhancer regions [135]. These findings illustrate
that, in several instances, low-penetrance breast cancer
susceptibility alleles may exert regulatory roles in the
fine-tuning of gene expression in the respective tissue,
and the patterns of regulation can be complex.
As a caveat, a GWAS roughly localises but usually

does not yet identify the causal variant. In several cases
there is more than one candidate gene in the region
spanned by the associated LD block, and there can be
even more candidate genes under putative regulatory
control of the identified locus. For example at the 5q11.2
locus, the MAP3K1 gene represents an excellent candi-
date as it represents one of the most frequently mutated
genes in breast tumours but MIER3 is another mam-
mary tumour suppressor gene nearby [136,137]. In some
instances, available microarray data supported an associ-
ation of the identified SNP with gene expression [72,138].
One locus, LSP1, lies in proximity to the imprinted region
H19/IGF2, and breast cancer risk has been reported to be



Table 2 Genomic loci harbouring low-penetrance breast cancer susceptibility alleles

Locus SNP Reported
gene

Nearby genes (selected) Association with
ER status

Reference

1p11 rs2580520, rs11249433 EMBP1 HIST3, HIST2H2BA ER + ve ~ ER-ve [99,101,119,120]

1p13 rs11552449 DCLRE1B PTPN22, HIPK1, BCL2L15 ER + ve > ER-ve [72]

1p36 rs616488 PEX14 KIF1B, UBE4B, RBP7 ER-ve > ER + ve [37]

1q32 rs4245739 MDM4 PIK3C2B ER-ve [115]

1q32 rs6678914 LGR6 UBE2T, PTPN7 ER-ve [115]

2p24 rs12710696 intergenic OSR1 ER-ve [115]

2q14 rs4849887 intergenic INHBB, RALB, GLI2 ER + ve ~ ER-ve [72]

2q31 rs2016394 intergenic DLX1, DLX2, ITGA6, PDK1 ER + ve [72]

2q31 rs1550623 intergenic CDCA7, MLK7-AS1, ZAK ER + ve ~ ER-ve [72]

2q33 rs1045485, rs10931936, rs3834129-
rs6723097-rs3817578

CASP8 CASP10, ORC2, CDK15 ER + ve ~ ER-ve [101,121,122]

2q34 rs13393577 ERBB4 MIR4776 ER + ve ~ ER-ve [110]

2q35 rs13387042, rs16857609 DIRC3 PINC, TNS1, IGFBP1, IGFBP5 ER + ve > ER-ve [72,97,103,123,124]

3p24 rs4973768 SLC4A7 NEK10 ER + ve > ER-ve [98,101,103]

3p24 rs12493607 TGFBR2 GADL1 ER + ve [72]

3p26 rs10510333 intergenic GRM7 ER + ve ~ ER-ve [113]

3p26 rs6762644 ITPR1 SUMF1, BHLHE40 ER + ve [72]

3q25 rs6788895 SIAH2 MED12L, SELT, EIF2A ER + ve [112]

3q26 rs3806685 intergenic PIK3CA, ZNF639 ER + ve ~ ER-ve [110]

4q24 rs9790517 TET2 PPA2 ER + ve [72]

4q34 rs6828523 ADAM29 GLRA3 ER + ve [72]

5q11 rs889312, rs16886165 intergenic MAP3K1, MIER3 ER + ve > ER-ve [95,99,101]

5q11 rs1353747, rs10472076 PDE4D RAB3C, PDK2 ER + ve ~ ER-ve [72]

5p12 rs4415084, rs10941679, rs7716600,
rs9790879, rs4866929

intergenic HCN1, MRPS30,FGF10 ER + ve > ER-ve [96,97,101,103,124]

5p15 rs1092913 intergenic MARCH6, DAP ER + ve > ER-ve [105,110]

5p15 rs2736108, rs10069690, rs2242652 TERT CLPTM1L variant specific [104,114]

5q33 rs1432679 EBF1 RNF145, UBLCP1 ER + ve ~ ER-ve [72]

6p23 rs204247 intergenic RANBP9, SIRT5, CCDC90A ER + ve [72]

6p24 rs9348512 intergenic GCNT2, PAK1IP1, TFAP2A BRCA2 specific [118]

6p25 rs11242675 intergenic FOXQ1, FOXF2, FOXC1 ER + ve ~ ER-ve [72]

6q14 rs17529111, rs17530068 intergenic FAM46A, IBTK, SSBP2 ER + ve ~ ER-ve [72,109]

6q25 rs9498283 TAB2 SUMO4, LATS1 ER + ve ~ ER-ve [110]

6q25 rs3757318, rs12662670, rs6929137,
rs3734804, rs3734805, rs2046210

intergenic ESR1 variant specific [100,101,103,106,125-127]

7q32 rs2048672 FLJ43663 MIR29A, KLF14 not mentioned [106]

7q35 rs720475 ARHGEF5 NOBOX ER + ve [72]

8p12 rs9693444 intergenic DUSP4, KIF13B ER + ve ~ ER-ve [72]

8q21 rs6472903, rs2943559 HNF4G CRISPLD1, ZFHX4 ER + ve > ER-ve [72]

8q24 rs672888, rs1562430,
rs13281615, rs11780156

intergenic PVT1, MIR1204-08, MYC ER + ve ~ ER-ve [72,95,101,103]

9p21 rs1011970 CDKN2B CDKN2A, CDKN2B-AS1 ER + ve > ER-ve [101]

9q31 rs865686, rs10759243 intergenic RAD23B, KLF4 ER + ve > ER-ve [72,103]

10p12 rs7072776, rs11814448 intergenic DNAJC1, MLLT10 ER + ve≠ ER-ve [72]

10p15 rs2380205 intergenic ANKRD16, FBXO18, GDI2 ER + ve ~ ER-ve [101]
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10q21 rs10822013, rs10995190 ZNF365 EGR2, NRBF2 ER + ve > ER-ve [101,106]

10q22 rs704010, rs12355688 ZMIZ1 PPIF, ZCCHC24, EIF5AL1 ER + ve ~ ER-ve [101,113]

10q25 rs7904519 TCF7L2 ZDHHC6, CASP7, DCLRE1A ER + ve ~ ER-ve [72]

10q26 rs2981582, rs11199914, rs2981579,
rs1219648, rs10510102

FGFR2 WDR11, TACC2 ER + ve [72,95,96,99,101,103,124]

11p15 rs3817198, rs909116 LSP1-TNNT3 CTSD, DUSP8, IGF2 ER + ve ~ ER-ve [95,101,128]

11q13 rs3903072 intergenic RELA, MAP3K11, MUS81 ER + ve [72]

11q13 rs614367, rs661204, rs78540526,
rs554219, rs657686, rs75915166

intergenic CCND1, FGF19, FGF4, FGF3 ER + ve > ER-ve [101,116]

11q24 rs11820646 intergenic BARX2, NFRKB, PRDM10 ER + ve ~ ER-ve [72]

12p11 rs10771399 PTHLH CCDC81 ER + ve ~ ER-ve [108]

12p13 rs12422552 intergenic ATF7IP, GRIN2B, PLBD1 ER + ve ~ ER-ve [72]

12q22 rs17356907 intergenic NTN4, USP44, METAP2,
NR2C1 VEZT, FGD6, CCDC38

ER + ve ~ ER-ve [72]

12q24 rs1292011 intergenic TBX3 ER + ve > ER-ve [108]

14q13 rs2236007 PAX9 NKX2-8 ER + ve > ER-ve [72]

14q24 rs999737, rs2588809, rs1314913,
rs10483813, rs8009944,

RAD51B ZFP36, ACTN1, DCAF5 ER + ve [72,99,101,111,119]

14q31 rs4322600 GALC GPR65 ER + ve ~ ER-ve [113]

14q32 rs941764 CCDC88C GPR68, SNORA11B, RPS6KA5,
SMEK1, CATSPERB, TC2N

ER + ve [72]

16q12 rs3803662 intergenic TNRC9/TOX3, MIR548, CHD9 ER + ve > ER-ve [95,101,103,107,111,124]

16q12 rs17817449, rs11075995 FTO AKTIP, RBL2, CHD9 ER + ve ~ ER-ve [72,115]

16q23 rs13329835 CDYL2 CENPN, ATMIN, GCSH, PKD1L2 ER + ve > ER-ve [72]

17q22 rs6504950, rs1156287 STXBP4 COX11, HLF ER + ve > ER-ve [98,101]

17q24 rs11077488 intergenic KCNJ2, KCNJ16 Not mentioned [110]

18q11 rs527616, rs1436904 CHST9 KCTD1, TAF4B ER + ve > ER-ve [72]

19p13 rs8170, rs8100241, rs2363956 BABAM1 ANKLE1 ER-ve [102,109,129]

19p13 rs4808801 ELL SSBP4, FKBP8, PDE4C ER + ve ~ ER-ve [72]

19q13 rs3760982 intergenic ZNF Cluster, KCNN4, SMG9, XRCC1 ER + ve ~ ER-ve [72]

19q13 rs10411161, rs3848562 ZNF577 MIR125A, ZNF Cluster Not mentioned [105]

20q11 rs2284378 RALY ASIP, EIF2S2, CHMP4B, ZNF341, E2F1 ER-ve [109]

21q21 rs2823093 intergenic NRIP1 ER + ve > ER-ve [108]

22q12 rs132390 EMID1 KREMEN1, CHEK2, EWSR1, NF2 ER + ve ~ ER-ve [72]

22q13 rs6001930 MKL1 SGSM3, ADSL, MCHR1, XPNPEP3,
DNAJB7, RBX1

ER + ve ~ ER-ve [72]

22q13 CNV2576, tagged by rs12628403 APOBEC3A-
APOBEC3B

APOBEC3C ER + ve ~ ER-ve [130]

Legend to Table 2:
72 genomic loci that have been found to harbour low-penetrance breast cancer susceptibility alleles. Genes already mentioned in Table 1 have been excluded
although long-range effects remain a possibility. All loci except for CASP8 have been derived from genome-wide association studies. Some chromosomal loci that
harbour more than one independent risk variant were here combined when there was a strong overlap of candidate genes. If the variant was within a gene, this
is listed separately, although this does not necessarily mean it represents the causal gene. Selected candidate genes in the vicinity (< 1 Mb) are listed in the
fourth column. Genes were taken from the GRCh37.p10 primary assembly drawn from the NCBI Genbank (http://www.ncbi.nlm.nih.gov/gene). Association with ER
status has been drawn from the original references, and a preponderance of one subtype was assumed if p(het) < 0.05. Note that genome-wide significance has
been borderline for some results [106,110,113] so that additional validation may be needed for those variants.

Bogdanova et al. Hereditary Cancer in Clinical Practice 2013, 11:12 Page 8 of 16
http://www.hccpjournal.com/content/11/1/12
limited to the paternally inherited allele [128]. In other in-
stances, identified loci have independently been correlated
with previously known risk factors for breast cancer, such
as FTO for obesity, INHBB for breast size or ZNF365 for
mammographic density, strongly suggesting that the risk
for breast cancer could be mediated via these physiological
traits [139-142]. But for the majority of loci, fine-mapping
approaches in different ethnic populations as well as gene

http://www.ncbi.nlm.nih.gov/gene
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expression and chromatin configuration studies are pres-
ently being used to further trace down the true predispos-
ing variants. A combination of such approaches has
recently identified regulatory mechanisms that underlie
the association of independent variants at 11q13 with
breast cancer and act in concert to orchestrate cyclin D1
expression [116].
Copy number variants (CNVs) have also been investi-

gated at a genome-wide level. While one GWAS did
not detect a significant association for breast cancer in
European patients another one detected a significant asso-
ciation with a common APOBEC3B deletion in Chinese
breast cancer patients [130,143]. APOBEC3B encodes a
cytosine deaminase that functions in localised hypermuta-
tion (“kataegis”) and may be responsible for chronic DNA
damage in breast cancers [144,145]. Loss of one or both
APOBEC3B copies was associated with odds ratios of 1 · 31
and 1 · 76, respectively [130]. Additional recent studies
also showed a consistent increase in the frequency of rare
CNVs in breast cancer cases when compared to controls
[146,147], with a particular enrichment of CNVs in genes
involved in estrogen signalling and DNA double strand
break repair in one study [147]. If confirmed, this mirrors
some results from genome-wide SNP analyses, although
there has been no overlap of the identified loci thus far.

Implications for risk prediction and therapy
Hereditary breast cancer represents a challenge in terms
of genetic counselling as well as preventive and thera-
peutic decisions. The identification of mutations in indi-
viduals from multiple-case families with breast cancer
makes it possible to predict the age-dependent risk for
different cancers, including recurrence risks in the
already affected, and to counsel patient and blood rela-
tives more appropriately. With the identification of
modifying variants, the risk prediction for BRCA1 or
BRCA2 mutation carriers can be further refined. Risk
prediction may lead to an increased surveillance or
targeted prevention including magnetic resonance im-
aging, medication (such as tamoxifen) or preventive sur-
gery (such as prophylactic oophorectomy). In many
countries, this is available to patients with a high (over
30%) lifetime risk such as BRCA1 or BRCA2 mutation
carriers, whereas a more restrained position is taken for
patients with intermediate-penetrance mutations confer-
ring an about 3-fold increase in breast cancer risk such
as ATM or CHEK2. Although the female carriers for
those mutations could also benefit from increased sur-
veillance, large studies on the efficacy of such measures
are lacking. No further counselling is provided for pa-
tients carrying common risk alleles at polymorphic loci,
as these risks are too small individually to be clinically
meaningful. This situation may change, however, if one
considers cumulative effects for several of those variants
that can reach substantial risk modifications already at
the present stage of knowledge. Previous estimates pre-
dicted that half of the population at highest risk may ac-
count for about 88% of breast cancer cases [94]. Using the
current set of loci and assuming that all loci combine mul-
tiplicatively, risks of breast cancer were estimated approxi-
mately 2 · 3-fold and 3-fold higher for individuals in the top
5% and 1% of the population, relative to the population
average [72]. With the identification of many more low-risk
loci it may become possible to calculate combinatorial risks
that could be useful in a stratified approach of cancer pre-
vention in the future [148-150].
Population diversity needs to be taken into account for

breast cancer susceptibility at all levels of penetrance.
Due to founder effects, single mutations can contribute
significantly to the breast cancer burden in founder pop-
ulations and intermediate-risk alleles in some genes have
almost exclusively been found in certain population
groups, such as for FAM175A and RAD50 in the Finnish
population or NBN in Slavic populations [28,41-44]. In
fact, much of the present knowledge about those genes
relies on particular founder mutations, and in regard of
allelic heterogeneity one must be cautious to extrapolate
and generalise these observations to other less common
alleles. Similarly, common polymorphisms at breast can-
cer susceptibility loci will differentially impact on breast
cancer risk in different ethnic groups, if they display dif-
ferent frequencies or different linkage disequilibrium
patterns across populations, such as CASP8*D302H that
is virtually absent in Asians [121], or the ESR1 locus at
which different risk alleles SNPs have emerged in Asians
and Europeans [100,103,125-127]. Gene-based strategies
for an improved risk prediction will therefore need to be
elaborated in a population-specific way.
In addition to risk prediction, identifying the genetic

basis of breast cancer in the individual patient might
have further prognostic and therapeutic implications.
Breast cancer therapy has been guided for long by the
presence or absence of gene products such as hormone
receptors or HER2/neu. These tumour characteristics
are partly determined by germ-line mutations, as exem-
plified by BRCA1 mutations which are frequently associ-
ated with triple-negative breast cancers, but breast
cancer pathology also seems to be influenced by low-
penetrance variants like those in FGFR2 that are strongly
correlated with estrogen-receptor positive disease [95,96,151].
In fact, many of the hitherto identified variants appear to
preferentially associate with a defined estrogen receptor
status (Table 2) [119,123,152]. Further studies are pres-
ently underway to investigate whether SNP profiling could
be of prognostic value [153].
The identification of breast cancer susceptibility alleles

may also guide the development of new drugs that target
additional breast cancer pathways, such as oncogenic
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signalling mediated by FGF receptors [154] or mutation
accumulation mediated through ABOBEC3B. Such
new drugs are particularly needed in the treatment of
otherwise poorly targetable breast carcinomas such as
triple-negative tumours [155] and the identification of
risk alleles in genes like BABAM1 or MDM4 in this
particular subgroup may offer promising avenues for
new therapeutic regimens. The concept of “synthetic
lethality” as exemplified by the introduction of PARP1
inhibitors into treatment of patients with BRCA1 or
BRCA2 mutations may also prove useful in the devel-
opment of other compounds to target additional gen-
etic predispositions [156-158].

Conclusions and outlook
Tremendous progress has been made during the past
few years in deciphering the polygenic susceptibility to
breast cancer. The results suggest that key pathways are
targeted by different sources of genetic variation influen-
cing the hereditary risk. To a large extent these findings
fulfil the predictions made some forty years ago that
“genes may either cause susceptibility of the mammary
gland to hormonal action [or to a virus], or induce an
easy transformation from a normal to a malignant cell”
[1]. It can be anticipated that hundreds of additional loci
are still to be detected that collectively form the basic
layout for an individual’s susceptibility to breast cancer.
With many more genes being identified, a deeper under-
standing of breast cancer development and progression
together with the ability of gene-based stratification
should ultimately lead to improved prevention and an
individually tailored therapy to the benefit of each patient.
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