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mismatch repair gene missense variants using
biochemical and cellular assays
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Abstract

With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious
germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be
used to diagnose this disorder in patients. A definitive diagnosis of LS can direct how clinicians manage the disease
as well as prevent future cancers for the patient and their families. A challenge emerges, however, when a germline
missense variant is identified in a MMR gene in a suspected LS patient. The significance of a single amino acid
change in these large repair proteins is not immediately obvious resulting in them being designated variants of
uncertain significance (VUS). One important strategy for resolving this uncertainty is to determine whether the
variant results in a non-functional protein. The ability to reconstitute the MMR reaction in vitro has provided an
important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a
number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete
biochemical steps or other aspects of MMR function. Here, we describe some of these assays along with the
challenges of using such assays to determine the functional consequences of MMR VUS which, in turn, can provide
valuable insight into their clinical significance. With increased gene sequencing in patients, the number of identified
VUS has expanded dramatically exacerbating this problem for clinicians. However, basic science research
laboratories around the world continue to expand our knowledge of the overall MMR molecular mechanism
providing new opportunities to understand the functional significance, and therefore pathogenic significance, of
VUS.
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Introduction
Lynch syndrome (LS; also called hereditary nonpolyposis
colorectal cancer, HNPCC) is a hereditary cancer suscepti-
bility/predisposition disease caused by a heterozygous
germ line mutation in the DNA mismatch repair (MMR)
gene MSH2, MSH6, MLH1 or PMS2 [1,2]. Somatic loss or
hypermethylation of the wild-type allele results in a cell
with defective MMR [1-3]. Loss of MMR function likely
leads to tumorigenesis through the establishment of a mu-
tator phenotype that increases the likelihood of developing
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mutations in other oncogenes and tumor suppressors.
The majority of MMR gene mutations currently detected
in LS patients are assumed to be pathogenic as they result
in deletion of the protein product. A significant problem,
however, is the identification of an increasing number of
germline missense variants in the MMR genes. Missense
variants may account for 20-30% of mutations in LS
patients [4,5], many of which are now catalogued in MMR
gene mutation databases (e.g. www.insight-group.org,
www.mmruv.info). A causal role for the majority of these
missense variants in disease pathogenesis is not immedi-
ately obvious, thus they are termed variants of uncertain
significance (VUS). The identification of a deleterious
germline MMR gene mutation provides a definitive diag-
nosis of LS, thus, the uncertainty of a VUS poses a major
ed Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

http://www.insight-group.org
http://www.mmruv.info
mailto:cheinen@uchc.edu
mailto:lenera@sund.ku.dk
http://creativecommons.org/licenses/by/2.0


Heinen and Rasmussen Hereditary Cancer in Clinical Practice 2012, 10:9 Page 2 of 10
http://www.hccpjournal.com/content/10/1/9
problem for clinicians and genetic counselors who must
manage the patient and their family members.
Obtaining extensive clinical information about differ-

ent VUS is important for determining those most likely
to be pathogenic. Key information includes determining
whether the variant segregates with the affected mem-
bers in a suspected LS family, that the variant does not
occur in >1% of the general population and that it
associates with a tumor that displays hallmarks of de-
fective MMR such as microsatellite instability (MSI)or
loss of protein expression as determined by tissue
immunohistochemistry (IHC). As the majority of LS-
causing MMR gene mutations result in loss of protein
expression, tumor IHC is a widely used first screen for
diagnosing LS [6-8]. Certain VUS may affect protein sta-
bility, resulting in a negative IHC test, however, a VUS
may affect MMR function without disrupting protein
levels. Thus, it is also important to test whether the VUS
affects MMR function through a variety of in vitro and
cellular assays.

A proposed decision tree for the analysis of MMR
gene VUS
The use of functional assays makes up a significant por-
tion of our previously proposed three-step diagnostic
tree for assessing the pathogenicity of VUS in MMR
genes [9]. Step 1 of this decision tree involves the
current diagnostic procedure for suspected LS patients;
analysis of the tumor phenotype by IHC and/or MSI
testing, followed by testing for a mutation in the MMR
genes. If a VUS is found, the diagnostic procedure
continues to Step 2 which comprises in silico alignment-
and splice site-based predictive analysis of the VUS. This
includes the bioinformatic tool referred to as Multivari-
ate Analysis of Protein Polymorphisms-Mismatch Repair
(MAPP-MMR) which aides in the prediction of patho-
genicity of MSH2 and MLH1 variants [10]. MAPP-MMR
combines an analysis of the conservation of the altered
amino acid with the change in physiochemical properties
of the amino acid. The score derived from this algorithm
allows for the classification of a given variant as neutral,
deleterious or borderline.
Step 2 also includes widely used assays for measuring

repair of mismatches in vitro. Due to work in basic sci-
ence research laboratories over the past two decades our
knowledge of MMR function has improved tremen-
dously. The best characterized function of the MMR
proteins is the ability to repair single base pair mis-
matches and small insertion/deletion loops (IDLs) [11-
13]. The MMR pathway is initiated by the recognition of
DNA lesions by a heterodimer of the MSH2 and MSH6
proteins which recognizes single base pair mismatches
and small IDLs, or MSH2 and MSH3 which recognizes
larger IDLs [14]. DNA mismatch recognition by MSH2-
MSH6 stimulates an ATP for ADP exchange at adeno-
sine nucleotide binding sites in both proteins resulting
in the formation of ATP-bound MSH2-MSH6 sliding
clamps on the DNA [15]. The sliding clamps recruit a sec-
ond MMR heterodimer consisting of MLH1 and PMS2.
MLH1-PMS2 binds several MMR proteins and modulates
their activity in a mismatch-dependent manner. PMS2
harbors a latent endonuclease activity that when activated
in a mismatch-dependent manner introduces a nick in the
daughter strand, 5’ of the mismatch [16]. The exonuclease
EXO1 loads at this nick in a MMR-dependent fashion and
excises the misincorporation-containing DNA strand.
Once excision extends past the site of the mismatch, the
excised strand is resynthesized. Loss of MMR function
leads to increased genomic instability which has been pro-
posed to accelerate the accumulation of mutations in
important oncogenes and tumor suppressors that drive
tumorigenesis [17]. Evidence for a mutator phenotype in
Lynch syndrome cancers is readily apparent, most notice-
ably through the increase of MSI which includes frame-
shift mutations at small repeat sequences in known
cancer-associated genes from MMR-defective cancers [18].
The repair of mismatches has been reconstituted

in vitro providing valuable information about the proteins
necessary for MMR and their roles during the process
[19-21]. Cellular extracts or recombinant MMR proteins
are tested for their ability to repair a DNA plasmid that
contains a single mismatch within an endonuclease re-
striction site. This repair assay also has been utilized to
study the repair capabilities of VUS-containing MMR pro-
teins as reviewed previously [22,23]. Assessing the repair
of mismatches is likely the most biologically relevant assay
for assessing the function of a variant. However, the prep-
aration of reagents is tedious and the assay itself requires
certain technical specialization. Recently, a cell-free assay
for testing the MMR function of MLH1, MSH2 and
MSH6 variants was described [24,25]. This system utilizes
PCR mutagenesis and in vitro transcription and transla-
tion to generate VUS-containing MMR proteins for use in
the in vitro repair assay. This approach eliminates the time
consuming and technically difficult cloning and protein
purification steps which begins to make these tests more
amenable for clinical diagnostic labs. However, before this
assay can be used in clinical diagnostic laboratories it
needs to be validated.

Step 3 assays for assessing VUS function
If the results after Step 2 are inconclusive, the VUS
remains unclassified. An additional layer of diagnostic
assays can include an examination of other cell-
biological, biochemical and biophysical analyses of the
MMR proteins (Step 3). These assays often address more
specific aspects of the protein function beyond measur-
ing repair of mismatches (Figure 1).
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Figure 1 Mismatch repair functions tested in Step 3 assays. Step 3 assays have been designed to test the effects of cancer-associated VUS in
various aspects of mismatch repair function. These assays test VUS effects on mRNA splicing, protein expression levels, ability to interact with
other mismatch repair proteins including known heterodimer partners, cellular localization, DNA mismatch binding, ATP binding and hydrolysis,
repair and cell cycle checkpoint and apoptosis activation in response to certain mutagenic reagents.
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In vitro biochemical assays
The formation of heterodimers between the MMR pro-
teins is key to their function. In vitro approaches have
been utilized to examine heterodimer formation between
MSH2 variants and a GST-tagged MSH3 or MSH6
revealing that none of the variants tested affected het-
erodimer formation [26]. Similarly, the same group
examined the ability of MLH1 variant proteins to bind
to its partner PMS2 [27]. In this study, 10 of the 11 var-
iants analyzed had a detrimental effect on heterodimer
formation.
In addition to heterodimer formation, in vitro assays

have been used to test the effects of VUS on discrete
biochemical steps in the MMR molecular mechanism.
Our group has studied recombinant MSH2-MSH6 carry-
ing single amino acid alterations in MSH2 or MSH6 for
their ability to perform several biochemical functions in-
cluding mismatch binding and ATP hydrolysis [28-30].
As MSH2-MSH6 must bind and hydrolyze ATP to exe-
cute MMR, a variant that is deficient in these activities
is very likely pathogenic. Similar studies have examined
the ability of the VUS containing heterodimer to bind to
mismatched DNA and release mismatches in an ATP-
dependent manner; both functions critical to proper
MMR [31-35]. However, the assays performed in these
studies are not readily transferrable to a clinical diagnos-
tic lab as they require extensive specialization. The value
of these studies mainly lies in the basic science research
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lab where the variants may be used as tools to improve
our overall understanding of MMR.

Cell-based assays
The main limitation of the in vitro biochemical assays
described, including the repair assays, is that they do not
exactly recapitulate the environment in which the MMR
proteins function and, therefore, may not fully reflect
how the variant will act inside the human cell. For ex-
ample, the MMR proteins need to identify and repair
mismatches in the context of chromatin, most likely in
cells undergoing active DNA replication. The manner in
which the MMR proteins interact with chromatin is only
beginning to be understood [36-38] and, therefore is dif-
ficult to model in vitro. Studies of the MMR variants in
the context of the human cell will be essential to fully
understand their effect on MMR function. The earliest
attempts to examine VUS function in human cell culture
models utilized transfection to re-express the VUS in a
MMR null background [39]. Expression of MLH1 VUS
in 293T human embryonic kidney fibroblasts revealed
that some of the variant containing proteins were
expressed at lower levels than a wild-type control which
may suggest an effect of the VUS on transcript or pro-
tein stability. A more recent study demonstrated a
reduced protein-half life for two MLH1 VUS transfected
into HCT-116 colorectal cancer cells indicating that the
reduced expression observed was due to decreased pro-
tein stability [40]. However, a large-scale study of MLH1
VUS transfected into HCT-116 cells concluded that pro-
tein expression levels do not always correlate with repair
capability [41]. Extracts from the transfected cells were
examined for protein expression levels and then used in
in vitro MMR assays. Some VUS were expressed at low
levels, yet the extracts displayed restored repair function.
Transient transfections were also used to determine that
an L749Q variant in MLH1 disrupted interactions with
its heterodimer partner PMS2 [40]. Disrupted inter-
action with PMS2 is assayed by measuring the level of
PMS2 protein in the cell. The PMS2 protein is unstable
if it is not in complex with MLH1 and, therefore, re-
introduction of functional MLH1 will lead to restored
PMS2 protein levels as well [42-44]. A similar study of
MSH2 VUS transfected into MSH2-null LoVo colorectal
cancer cells was performed to detect effects of VUS on
MSH2-MSH6 interactions [45]. Like PMS2, MSH6 pro-
tein is unstable when not in complex with MSH2 [46].
All 15 VUS studied resulted in near wild-type levels of
protein expression and normal interaction with MSH6.
There are several challenges when attempting to com-

plement human cell lines in culture. The first challenge
is selecting a cell line to use. To isolate the contribution
of the variant-containing MMR protein, cell lines that
lack expression of the endogenous MMR protein are
most useful. While it is possible to use small inhibitory
RNAs (siRNA) to specifically knock-down the levels of
the endogenous protein prior to introducing an siRNA-
resistant variant transgene, these studies are tedious and
may lead to misinterpretations as complete elimination
of the endogenous wild-type protein is unlikely. Thus,
the cell lines most commonly used are human cancer
cell lines that have suffered mutational inactivation of
the endogenous MMR genes. Previous studies have iden-
tified cancer cell lines that lack MSH2, MLH1 or MSH6
expression where MMR functions can be restored by re-
introduction of the wild-type gene [47-50]. Cancer cell
lines generally grow well in culture and are immortal
which makes it easy to generate large numbers of cells
for performing biochemical assays. However, the genetic
background of these lines is uncertain and likely un-
stable possibly masking the function of some VUS. Some
studies have avoided the need to use MMR-null cancer
cell lines by adding a protein tag to the variant transgene
to distinguish it from endogenous wild-type protein
[32,51,52]. Through use of fluorescent protein fusions,
we previously were able to track expression and cellular
localization of the variant proteins in NIH-3T3 primary
mouse embryonic fibroblasts (MEFs) (discussed further
below) [32]. This approach is limited to those assays in
which the tagged protein can be isolated from the en-
dogenous wild-type protein. In addition, the presence of
a large protein tag may influence the function of the
MMR protein, which needs to be examined in carefully
controlled experiments [53].
Another challenge to introducing MMR VUS into

human cells is the method of delivery. Transient trans-
fection, while the easiest approach, presents complica-
tions. Certain cell lines do not transfect very efficiently,
and the nature of the method often results in heterogen-
eity with regards to the levels of exogenous protein
expressed. Obtaining accurate levels of MMR protein ex-
pression is likely very important for assessing function.
Overexpression of MSH2 or MLH1 appears to be toxic
to some cells [54], while underexpression may result in
limited function [50,55]. One approach to address the
delivery problem is to directly target the MMR gene
locus in cells to “knock-in” the variant allele. A recent
study took advantage of the extensive knowledge of gene
targeting in mouse embryonic stem cells to generate
“knock-in” alleles for four MSH2 VUS [56]. The authors
generated homozygous mutant cells that were tested for
protein expression and MMR function. The advantage of
this approach is that the VUS are expressed from the en-
dogenous promoter allowing for normal regulation of
gene expression and mRNA processing. Additionally, the
mouse embryonic stem cells can be used to generate
mice to directly assess the effect of the VUS on tumori-
genesis. The major disadvantages are the technical
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difficulty of the approach and the fact that these studies
are performed in mouse cells using the murine MMR
genes. Though gene targeting has generally been very
difficult in human cells in culture, the use of recombin-
ant adeno-associated viruses [57], zinc finger nucleases
[58] and transcription activator like effector nucleases
(TALEN) [59] for targeting has made these studies more
feasible in recent years.

Nuclear localization
One aspect of VUS function that can only be studied in
cellular assays is whether it affects localization of the
protein. Nuclear import of the MMR proteins is obvi-
ously a prerequisite for proper DNA repair. For that
reason, nuclear translocation presents an additional
regulatory mechanism to both protein expression and
protein-protein interactions that could be disrupted by a
VUS. Moreover, the stoichiometry of repair complexes is
essential for efficient DNA repair indicating that both
the expression and nuclear translocation of DNA repair
proteins must be tightly regulated in order to maintain
the genomic integrity [60]. We have previously examined
the consequences of seven MSH2 VUS found in LS
families by expressing the variant cDNAs fused to a
fluorescent tag as described above. We show that two
variant proteins, MSH2-P622L and MSH2-C697F affect
nuclear localization in the cell while also conferring
in vitro biochemical defects, namely in mismatch bind-
ing, and in vivo interaction defects with MSH6 and
EXO1 as measured by yeast two-hybrid assays [32].

The MMR-dependent DNA damage response
The other major advantage to testing MMR VUS in the
context of the cell is the ability to examine other MMR
functions in addition to repair of single basepair mis-
matches. The MMR proteins are also involved in the
activation of cell cycle checkpoints and apoptosis in re-
sponse to certain DNA damaging agents. MMR-deficient
tumor cell lines and MEFs from Msh2, Mlh1 and Msh6
knockout mice are more resistant to treatment with
certain DNA damaging agents such as cisplatin and N-
methyl-N’-nitro-N-nitrosoguanidine (MNNG) [54,61-
68]. We have previously proposed that the loss of this
damage response in MMR defective cells may provide
cells a temporary selective advantage in an environment
conducive to increased DNA damage [69,70]. Thus, loss
of the MMR-dependent damage response may play a
role, along with the mutator phenotype, in tumorigen-
esis. Consistent with this theory, mice carrying a mis-
sense mutation in Msh2 that appeared to disrupt DNA
repair while maintaining damage response functions,
displayed tumor onset that was significantly delayed
compared to Msh2-null animals [71]. In a second study
of mice with a dominant missense mutation in Msh6, a
similar result was observed [72]. These results suggest
that both MMR-mediated checkpoint/apoptosis re-
sponse and DNA repair affect tumorigenesis. Thus,
understanding how VUS affect the MMR-dependent
damage response may be important for determining
their contribution to tumorigenesis. In addition, this in-
formation may be important for predicting how VUS
carriers may respond to certain therapy. Multiple studies
have suggested that patients with MMR-deficient tumors
do not benefit from some commonly used chemothera-
pies such as 5-fluoruracil, a common component of
colorectal cancer treatment regimens [73-76]. We re-
cently examined four MSH2 VUS for their ability to
restore repair and damage response functions to the
MSH2-null Hec59 endometrial cancer cell line [77]. The
VUS were stably introduced into cells through use of a
lentiviral expression vector which allowed us to more
carefully control for expression levels as well as examine
the function of the variant protein over multiple cell
generations. We observed that two of the four VUS
restored both repair, through use of an in vivo MMR
assay [78], and response to MNNG including cell sur-
vival and cell cycle checkpoint activation. Similarly,
Wielders et al., examined response to MNNG in their
mouse embryonic stem cells carrying MHS2 VUS and
determined that cells carrying the P622L variant caused
increased MSI and failed to respond to the drug [56].
Transient transfection of four MLH1 VUS into the
MLH1-defective A2780 ovarian carcinoma cells failed to
restore N-methyl-N-nitrosourea sensitivity, whereas
transfection with two known MLH1 polymorphisms
reversed the methylation tolerant phenotype [79].

Studying VUS in yeast
The effects of variants on MMR function have also been
examined in vivo in yeast [33,35,80-86]. The relative ease
of gene targeting in yeast makes the creation of strains
carrying different MMR gene variants feasible. These
variant strains can be tested for repair of marker genes
carrying homopolymeric repeats. msh2Δ yeast display a
290-fold increase in repeat tract instability compared to
wild-type yeast. Re-expression of MSH2 restores repair
levels, however an examination of 7 missense variants of
MSH2 showed that all 7 failed to restore normal repair
activity [34]. Similarly, another study identified 33 of 54
MSH2 VUS that fail to restore repair in an msh2Δ strain
compared to wild-type control [79]. A study of MLH1
variants in yeast demonstrated 15 out of 28 that were
defective for repair activity [82]. However, in a similar
assay in a different strain of yeast, the same variants dis-
played different repair capabilities suggesting that
genetic background may affect the function of some
VUS. As genetic background effects will certainly not be
limited to yeast, these results show the importance of
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in vivo approaches to studying variant function. The
relative ease of yeast genetics allows one to readily test
multiple variants and the repair assays utilized are
straight-forward and quantitative. The assays can be
standardized between labs, though likely those labs will
already need to be highly trained yeast laboratories. One
major disadvantage of this approach is that only those
variants which are conserved across species can be
tested. To address this disadvantage, researchers have
made attempts to “humanize” the yeast genome by cre-
ating hybrid human-yeast MMR genes [86,87] or cloning
in an entire human MMR gene into the yeast locus [88].
These approaches were then used to examine the func-
tionality of VUS in in vivo MMR assays. Another in-
escapable disadvantage is that despite the similarities in
MMR mechanism between yeast and humans, there may
still be important differences that affect interpretation of
yeast-based assays. Post-translational modifications,
protein-protein interactions and other aspects of MMR
regulation may differ in yeast and could affect VUS-
containing protein function. Clinicians often are hesitant
to rely on VUS functional data from non-mammalian
systems for diagnostic purposes without corroboration
from studies with human cells and proteins.

RNA splicing
In addition to affecting protein function, VUS have also
been shown to have effects on mRNA splicing by alter-
ing exonic splicing regulatory sequences. Analyses of
VUS-containing MSH2 or MLH1 mRNA from patients
revealed splicing defects that included exon skipping
and intron inclusion [89,90]. Step 2 of our proposed de-
cision tree involves the use of in silico predictions to
identify VUS that may affect splicing. These identified
variants can be further tested in cell culture experiments
that involve transfecting the relevant portion of the
patient genomic DNA cloned into a splicing reporter
minigene [91,92]. It is important to note that silent
mutations as well as nucleotide changes in intronic
sequences can also affect splicing, widening the scope of
VUS that need to be considered.

How much function is not enough and other
challenges
Though determining a genotype/phenotype relationship
for VUS should provide clear evidence for contribution
to disease, there are several challenges that keep it from
being so straight forward. VUS that result in loss of
MMR activity similar to that observed when the protein
is absent can most likely be considered pathogenic.
However, many VUS examined show intermediate activ-
ity that, while significantly increased over null controls,
does not match the level of the wild-type protein. In our
ATP hydrolysis studies, we identified some variants that
failed to function much above background, however, the
majority of VUS demonstrated intermediate activity [28-
30]. This is not limited to Step 3 assays, as VUS
displaying intermediate activity have been observed in
many of the studies examining repair function as well
[24,39,41,45,93]. The challenge is determining the sig-
nificance of these intermediate functional effects on
disease phenotype. Such subtle defects in protein func-
tion may arise from weak disease alleles that, through a
modest reduction in repair efficiency, can increase
genomic instability and contribute to tumorigenesis.
However, the expected mutator phenotype in these cells
would be milder slowing the accumulation of tumor-
causing mutations and resulting in reduced penetrance
compared to stronger LS-causing alleles. Presentation of
disease in carriers of weak alleles may depend on the
genetic background in the patient. The functional defect
of some VUS may not be sufficient to efficiently drive
cancer formation on its own, but combined with other
alleles that affect DNA replication fidelity would gener-
ate the levels of genomic instability necessary to drive
tumorigenesis. Studies of different MMR VUS modeled
in yeast suggest that polygenic interactions are possible
between two weak alleles that combine to produce a
stronger MMR defect [94]. These authors conclude that
the low penetrance of certain MMR VUS may be due to
the fact that additional mutational “hits” in other MMR
genes are required in the tumor to generate the strong
MMR defects necessary to drive disease. Consistent with
this model, a recent study described an association be-
tween germline variants of MSH3 and an MSH2 VUS in
an LS family [95]. Members of the family who carried
both the MSH3 and MSH2 variants developed early-
onset colon tumors marked by MSI. However, those
family members that carried only the MSH3 variant or
the MSH2 VUS alone did not develop LS tumors.
The interpretation of these intermediate results will

improve as more studies are performed. Future studies
will need to include more established strong disease
alleles or clear polymorphisms (as determined by clinical
and genetic information) as positive and negative con-
trols in order to define the range of functional activity
associated with disease. In addition, as more studies are
performed, the likelihood that certain VUS will be tested
in multiple assays increases. We already can begin to
compare results for some VUS analyzed by different
approaches [96]. For example, we previously determined
that the MSH2 D167H and K393M variants had inter-
mediate effects on MSH2-MSH6 in vitro adenosine
nucleotide processing [29]. More recently, we expressed
these same two variants into an MSH2-deficient cancer
cell line and observed that they restored cellular MMR
functions, including repair of a G/T mismatch and re-
sponse to alkylation damage, to near wild-type levels
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[77]. These results suggest that the biochemical defects
associated with D167H and K393M are not sufficient to
contribute to disease. However, an MSH2 P622L variant,
which has been shown to more dramatically disrupt
MSH2-MSH6 in vitro biochemical function [29,32,35],
displays clear cellular MMR defects when expressed in
yeast [35,79,81] or mammalian cell culture systems
[32,77]. By comparing in vitro and in vivo approaches,
we can begin to determine what level of biochemical
activity is associated with an inefficient cellular damage
response. Multiple studies of the same VUS do not
always result in clear interpretations, however. Reintro-
duction of the MLH1 R265C variant into MLH1 null
293T cells resulted in normal expression levels and
restoration of repair function [39]. However, studies
expressing the variant in HCT116 cells demonstrated
reduced protein stability [40] and only intermediate re-
pair (55% compared to 79.7% for wild-type) [41]. A
fourth study reported that the R265C UV failed to re-
store MMR activity at all in MLH1 deficient cell extracts
[97]. Finally, introduction of the equivalent variant into
yeast resulted in a strain that demonstrated an inter-
mediate mutator phenotype compared to the wild-type
strain indicating a defect in repair [83]. The conflicting
results suggest that VUS may have different activities de-
pending on the assay system, the genetic background of
the cell line utilized or other variables between labora-
tories. Thus, caution must be used when relying on a
single functional study to interpret disease significance.

Conclusions
Despite the challenges described above, the recent devel-
opment of second-generation assays holds promise for
the development of a widely applicable diagnostic pro-
cedure. Increased functional testing from multiple
laboratories will allow for improved standardization of
techniques as well as strengthen our ability to interpret
the results, particularly for those VUS with only inter-
mediate effects. However, functional studies of the
variant-containing protein should be only one
component of a multiple-step analysis of a VUS when
determining pathogenicity. In addition to examining
VUS in multiple functional assays, these results should
be combined with available clinical data such as segrega-
tion with disease in families and absence of the variant
in control populations. Other tumor features may be
informative as well, such as somatic loss of the
remaining wild-type allele in the tumor and certain mor-
phological or histopathological features characteristic of
LS cancers [98]. With improving technologies and falling
prices, sequencing of the MMR genes may become more
common in patients. Initially, this may occur as part of a
universal screening of all CRCs and eventually in the
context of routine genome sequencing that may become
a greater part of personalized medicine. Likely, this
means that the MMR VUS problem will continue to
grow. However, the increased attention being paid to
this problem by clinicians and scientists increases the
likelihood that we will be able to more accurately classify
these variants in the near future. A validated functional
test could be used to help diagnose LS in those patients
carrying a MMR gene VUS even in the absence of strong
family historyinformation.
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